1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
defmodule Day16 do
defmodule State do
@enforce_keys [:pqueue, :map, :path, :dist]
defstruct [:pqueue, :map, :path, :dist]
def new(game) do
pqueue = :gb_sets.from_list([{0, game.start}])
map = :gb_trees.insert(game.start, 0, :gb_trees.empty())
path = Map.new([{game.start, []}])
dist = Map.new([{game.start, 0}])
%State{pqueue: pqueue, map: map, path: path, dist: dist}
end
def upsert(state, posdir, dist, prev) do
case :gb_trees.lookup(posdir, state.map) do
:none ->
pqueue = :gb_sets.insert({dist, posdir}, state.pqueue)
map = :gb_trees.insert(posdir, dist, state.map)
path = Map.put(state.path, posdir, [prev])
distmap = Map.update(state.dist, posdir, dist, &min(&1, dist))
%State{pqueue: pqueue, map: map, path: path, dist: distmap}
{_, odist} ->
distmap = Map.update!(state.dist, posdir, &min(&1, dist))
cond do
dist > odist ->
%State{state | dist: distmap}
dist == odist ->
path = Map.update!(state.path, posdir, &[prev | &1])
%State{state | path: path, dist: distmap}
true ->
pqueue = :gb_sets.delete({odist, posdir}, state.pqueue)
pqueue = :gb_sets.insert({dist, posdir}, pqueue)
map = :gb_trees.update(posdir, dist, state.map)
path = Map.put(state.path, posdir, [prev])
%State{pqueue: pqueue, map: map, path: path, dist: distmap}
end
end
end
def empty?(state) do
:gb_sets.is_empty(state.pqueue)
end
def pop(state) do
{v, pqueue} = :gb_sets.take_smallest(state.pqueue)
{v, %State{state | pqueue: pqueue}}
end
def optimal_dist(state, node) do
state.dist
|> Enum.filter(fn {{pos, _}, _} -> pos == node end)
|> Enum.map(fn {_, v} -> v end)
|> Enum.min()
end
def optimal_path_nodes(state, node) do
nodes = state.dist
|> Enum.filter(fn {{pos, _}, _} -> pos == node end)
mindist = nodes
|> Enum.map(fn {_, v} -> v end)
|> Enum.min()
nodes = nodes
|> Enum.filter(fn {_, v} -> v == mindist end)
|> Enum.map(fn {posdir, _} -> posdir end)
optimal_path_nodes(state, nodes, [])
end
defp optimal_path_nodes(state, queue, acc) do
case queue do
[] ->
acc
|> Enum.map(fn {pos, _} -> pos end)
|> Enum.uniq()
[h | t] ->
acc = [h | acc]
queue = Map.fetch!(state.path, h) ++ t
optimal_path_nodes(state, queue, acc)
end
end
end
defmodule Game do
@derive Inspect
defstruct [:grid, :start, :end]
def from_data(data) do
grid = data
|> String.split("\n", trim: true)
|> Enum.with_index()
|> Enum.flat_map(fn {s, i} ->
String.codepoints(s)
|> Enum.with_index()
|> Enum.map(fn {c, j} -> {{i, j}, c} end)
end)
|> Map.new()
start = grid
|> Enum.find_value(fn {pos, c} -> c == "S" and pos end)
|> then(& {&1, :right})
endpos = grid
|> Enum.find_value(fn {pos, c} -> c == "E" and pos end)
%Game{grid: grid, start: start, end: endpos}
end
def shortest(game) do
game
|> shortest(State.new(game))
|> State.optimal_dist(game.end)
end
def shortest_path_nodes(game) do
game
|> shortest(State.new(game))
|> State.optimal_path_nodes(game.end)
end
defp shortest(game, state) do
if State.empty?(state) do
state
else
{{dist, {pos, dir}}, state} = State.pop(state)
if pos == game.end do
shortest(game, state)
else
neighbors(game, {dist, {pos, dir}})
for {ndist, nposdir} <- neighbors(game, {dist, {pos, dir}}), reduce: state do
state -> State.upsert(state, nposdir, ndist, {pos, dir})
end
|> then(& shortest(game, &1))
end
end
end
defp neighbors(game, {dist, {{i, j}, dir}}) do
case dir do
:right ->
[{dist+1, {{i, j+1}, :right}},
{dist+1001, {{i-1, j}, :up}},
{dist+1001, {{i+1, j}, :down}},
{dist+2001, {{i, j-1}, :left}}]
:left ->
[{dist+1, {{i, j-1}, :left}},
{dist+1001, {{i-1, j}, :up}},
{dist+1001, {{i+1, j}, :down}},
{dist+2001, {{i, j+1}, :right}}]
:up ->
[{dist+1, {{i-1, j}, :up}},
{dist+1001, {{i, j-1}, :left}},
{dist+1001, {{i, j+1}, :right}},
{dist+2001, {{i+1, j}, :down}}]
:down ->
[{dist+1, {{i+1, j}, :down}},
{dist+1001, {{i, j-1}, :left}},
{dist+1001, {{i, j+1}, :right}},
{dist+2001, {{i-1, j}, :up}}]
end
|> Enum.filter(fn {_, {p, _}} ->
case Map.fetch(game.grid, p) do
:error -> false
{:ok, "#"} -> false
_ -> true
end
end)
end
end
def part1(data) do
data
|> Game.from_data()
|> Game.shortest()
end
def part2(data) do
data
|> Game.from_data()
|> Game.shortest_path_nodes()
|> Enum.count()
end
end
data = IO.read(:stdio, :eof)
{time1, ans1} = :timer.tc(fn -> Day16.part1(data) end)
IO.puts("Time : #{time1 / 1000000}")
IO.puts("Answer: #{ans1}")
{time2, ans2} = :timer.tc(fn -> Day16.part2(data) end)
IO.puts("Time : #{time2 / 1000000}")
IO.puts("Answer: #{ans2}")
|