
On the Design and Anytime Performance of
Indicator-based Branch and Bound for

Multi-objective Combinatorial Optimization
Alexandre D. Jesus

University of Coimbra, CISUC, DEI, Coimbra, Portugal
Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9188 - CRIStAL, F-59000 Lille, France
ajesus@dei.uc.pt

Luís Paquete
University of Coimbra, CISUC, DEI, Coimbra, Portugal

paquete@dei.uc.pt

Bilel Derbel
Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9189 - CRIStAL, F-59000 Lille, France
bilel.derbel@univ-lille.fr

Arnaud Liefooghe
Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9189 - CRIStAL, F-59000 Lille, France
arnaud.liefooghe@univ-lille.fr

ABSTRACT
In this article, we propose an indicator-based branch and bound
(I-BB) approach for multi-objective combinatorial optimization that
uses a best-first search strategy. In particular, assuming maximizing
objectives, the next node to be processed is chosen with respect
to the quality of its upper bound. This quality is given by a binary
quality indicator, such as the binary hypervolume or the 𝜀-indicator,
with respect to the archive of solutions maintained by the branch
and bound algorithm. Although the I-BB will eventually identify the
efficient set, we are particularly interested in analyzing its anytime
behavior as a heuristic. Our experimental results, conducted on
a multi-objective knapsack problem with 2, 3, 5, and 7 objectives,
indicate that the I-BB can often outperform the naive depth-first
and breadth-first search strategies, both in terms of runtime and
anytime performance. The improvement is especially significant
when the branching order for the decision variables is random,
which suggests that the I-BB is particularly relevant when more
favorable (problem-dependent) branching orders are not available.

CCS CONCEPTS
• Computing methodologies → Search methodologies; • The-
ory of computation → Branch-and-bound; • Mathematics of
computing → Combinatorial algorithms;

KEYWORDS
Multi-objective combinatorial optimization, Search methodologies,
Branch and bound, Indicator-based approaches

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00
https://doi.org/10.1145/3449639.3459360

ACM Reference Format:
Alexandre D. Jesus, Luís Paquete, Bilel Derbel, and Arnaud Liefooghe. 2021.
On the Design and Anytime Performance of Indicator-based Branch and
Bound for Multi-objective Combinatorial Optimization. In 2021 Genetic and
Evolutionary Computation Conference (GECCO ’21), July 10–14, 2021, Lille,
France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3449639.
3459360

1 INTRODUCTION
Multi-objective combinatorial optimization (MOCO) deals with the
optimization of𝑚 objective functions over a combinatorial solution
space. Given the often conflicting nature of the objectives, there
may not exist a single optimal solution under the notion of Pareto
efficiency, but rather many efficient solutions that describe the trade-
offs between the objectives. Although MOCO problems are known
to be NP-hard and the efficient set may be exponentially large [9],
there are nonetheless problem instances for which the efficient set
can be computed in a feasible amount of time [11]. As such, it is
desirable to have approaches that can both (i) find the efficient set
given enough time and (ii) return an approximate solution set when
interrupted before completion.

Multi-objective branch and bound algorithms [19, 20] implicitly
traverse the complete solution space of a problemwhilemaintaining
an archive of the best solutions found. As such, branch and bound
algorithms can be seen as both exact and heuristic algorithms de-
pending on whether or not they are executed to completion. A
key aspect of a branch and bound approach is to split the original
problem into several subproblems at each branching step. Each
subproblem consists of assigning values to solution components,
given that some other components are already fixed. Assuming
maximization, an upper bound for each subproblem is used to
show whether the corresponding subproblem contains potential
efficient solutions for the original problem. If not, then it is not
worthwhile solving that subproblem. Of particular interest to us
is to understand which subproblem to choose such that it leads to
better performance for MOCO problems both in terms of runtime
and anytime behavior. We argue that this selection should be based
on the quality of the upper bound with respect to the archive. Up to
our knowledge, the idea of using the quality of the upper bound to

https://doi.org/10.1145/3449639.3459360
https://doi.org/10.1145/3449639.3459360
https://doi.org/10.1145/3449639.3459360

GECCO ’21, July 10–14, 2021, Lille, France Alexandre D. Jesus, Luís Paquete, Bilel Derbel, and Arnaud Liefooghe

guide the search of the branch and bound algorithm has not been
considered in multi-objective optimization. It has, however, been
used in single-objective optimization, e.g. [5].

In this work, we propose using a binary indicator to measure the
quality of the upper bound with respect to the archive maintained
by the branch and bound. This leads to a new family of branch and
bound algorithms for MOCO, namely, indicator-based branch and
bound (I-BB). We remark that, in addition to the possible improve-
ments discussed in the previous paragraph, the use of a quality
indicator in a multi-objective search technique gives the decision
maker a chance to control the search, since an indicator can, for
example, be designed or parameterized to benefit regions of the
objective space that are considered to be more relevant.

The use of quality indicators to guide the search strategy is
commonly used by multi-objective evolutionary and heuristic ap-
proaches. Notably, IBEA [23] is a general indicator-based evolu-
tionary algorithm that uses a quality indicator to remove the least
promising solutions from a population during the selection process
of the evolutionary approach. SMS-EMOA [3] is an evolutionary
algorithm that combines ideas from other evolutionary algorithms,
such as NSGA-II [7], and that considers the hypervolume quality
indicator [24] to remove the least promising solution from the pop-
ulation during selection. HypE [1] is an evolutionary algorithm that
similarly uses the hypervolume indicator to remove solutions from
the population in the selection step, but that considers a Monte
Carlo simulation to approximate the hypervolume due to its increas-
ing computational cost with respect to the number of objectives.
SPAM [25] is a heuristic resembling a hill climber that considers
a heuristic mutation to the archive of solutions that makes use of
a quality indicator to remove the least promising solutions. In [8]
the authors consider a Pareto local search [18] variant that uses a
quality indicator to select the next solution for processing. However,
to our knowledge, a quality indicator has never been used to guide
the search of exact algorithms such as branch and bound.

To study the performance of the proposed I-BB approach we
analyze its impact on the total runtime of the algorithm, as well as
on its anytime behavior in terms of the quality of the archive as a
function of CPU time. To measure the quality of an approximate
solution set we consider the hypervolume quality indicator [24]. To
measure the quality of an upper bound with respect to the archive
we consider two binary quality indicators: the binary hypervolume
quality indicator [22], and the 𝜀-indicator [26]. For the empirical
study we consider the multi-objective binary knapsack problem
with 2, 3, 5, and 7 objectives. Our results indicate that the I-BB
approach can often improve, or match, the performance of more
naïve branch and bound approaches, especially when considering
a random branching order.

The rest of this paper is organized as follows. In Section 2 we
introduce the necessary definitions related to multi-objective opti-
mization, quality indicators, and anytime performance. In Section 3
we introduce the proposed I-BB approach under a more general
branch and bound framework for MOCO. In Section 4 we present
the multi-objective binary knapsack problem and discuss the im-
plementation details of the I-BB algorithm for this problem. In
Section 5 we present the results of our empirical study. To conclude,
in Section 6 we give a summary of the work and discuss possible
directions for the future.

2 BACKGROUND
In the following we introduce the necessary definitions related to
multi-objective optimization and anytime performance.

2.1 Concepts and Notation for MOCO
Assuming, without loss of generality, that all objective functions
are to be maximized, a MOCO problem can be defined by:

argmax
𝑥 ∈𝑋

𝑓 (𝑥) = (𝑓1 (𝑥), 𝑓2 (𝑥), . . . , 𝑓𝑚 (𝑥)) (1)

where𝑥 denotes a solution,𝑋 denotes the set of all feasible solutions,
and 𝑓𝑖 (𝑥) → R denotes the 𝑖th objective function to be maximized.

Given two objective vectors 𝑦,𝑦′ ∈ R𝑚 we say that 𝑦 weakly
dominates 𝑦′ iff 𝑦𝑖 ≥ 𝑦′

𝑖
for every 𝑖 ∈ {1, 2, . . . ,𝑚}. This relation is

denoted by 𝑦 ≥ 𝑦′. Moreover, we say that 𝑦 dominates 𝑦′ iff 𝑦 ≥ 𝑦′

and 𝑦′ ≱ 𝑦. This relation is denoted by 𝑦 > 𝑦′. Then two objective
vectors 𝑦,𝑦′ ∈ R𝑚 are said to be incomparable or mutually non-
dominated iff 𝑦 ≯ 𝑦′ and 𝑦′ ≯ 𝑦, i.e. iff neither weakly dominates
the other. We describe two solutions 𝑥, 𝑥 ′ ∈ 𝑋 with respect to the
relations that hold for their objective vectors, e.g. we say that 𝑥
dominates 𝑥 ′ iff 𝑓 (𝑥) > 𝑓 (𝑥 ′). The efficient set to a MOCO problem
is given by the set of all solutions that are not dominated by any
other feasible solution. A set of mutually non-dominated feasible
solutions is called an approximate solution set.

We extend the relations above to sets of vectors in the objective
space [26]. Given two sets 𝐴, 𝐵 ⊂ R𝑚 we say that 𝐴 weakly domi-
nates 𝐵, denoted by 𝐴 ≥ 𝐵, iff every 𝑏 ∈ 𝐵 is weakly dominated by
an objective vector 𝑎 ∈ 𝐴, formally:

𝐴 ≥ 𝐵 ⇐⇒ ∀𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 s.t. 𝑎 ≥ 𝑏

We say that 𝐴 dominates 𝐵, denoted by 𝐴 > 𝐵 iff every 𝑏 ∈ 𝐵 is
dominated by an objective vector 𝑎 ∈ 𝐴, formally:

𝐴 > 𝐵 ⇐⇒ ∀𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 s.t. 𝑎 > 𝑏

And we say that 𝐴 and 𝐵 are incomparable iff 𝐴 ≱ 𝐵 and 𝐵 ≱ 𝐴.
Several quality indicators have been proposed to quantify the

quality of approximate solution sets as a scalar value. These can be
useful, for example, to distinguish between approximate solution
sets that are incomparable in terms of dominance. One such indica-
tor is the hypervolume quality indicator [24], which corresponds to
the multi-dimensional area dominated by the objective vectors of a
solution set with respect to a given reference point in the objective
space. Formally, for a set 𝐴 ⊂ R𝑚 and a reference point 𝑟 ∈ R𝑚 ,
the hypervolume is defined by:

𝐻 (𝐴, 𝑟) = 𝜆
({
𝑞 ∈ R𝑚 | ∃ 𝑎 ∈ 𝐴 : 𝑟 ≥ 𝑞 ≥ 𝑎

})
(2)

where 𝜆 is the Lebesgue measure. We also consider the binary
hypervolume quality indicator [22], which corresponds to the multi-
dimensional area dominated by a set but not by another, that is:

𝐻 (𝐴, 𝐵, 𝑟) = 𝐻 (𝐴 ∪ 𝐵, 𝑟) − 𝐻 (𝐵, 𝑟) (3)

We also consider the multiplicative 𝜀-indicator [26], which, given
two solution sets, corresponds to the minimum factor by which
every objective vector of the former has to be multiplied such that
it weakly dominates the latter. Formally, given two sets 𝐴, 𝐵 ⊂ R𝑚 ,
the multiplicative 𝜀-indicator is given by:

𝐸 (𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

max
𝑖∈{1,...,𝑚}

𝑏𝑖

𝑎𝑖
(4)

On the Design and Anytime Performance of Indicator-based Branch
and Bound for Multi-objective Combinatorial Optimization GECCO ’21, July 10–14, 2021, Lille, France

An important characteristic of these quality indicators is that
they are compatible with the weak dominance relation between
solution sets. In particular, if for two sets 𝐴, 𝐵 ⊂ R𝑚 it holds that
𝐴 ≥ 𝐵, then it also holds that 𝐻 (𝐴, 𝑟) ≥ 𝐻 (𝐵, 𝑟) for a given refer-
ence point 𝑟 , and that𝐻 (𝐴, 𝑅, 𝑟) ≥ 𝐻 (𝐵, 𝑅, 𝑟) and 𝐸 (𝐴, 𝑅) ≤ 𝐸 (𝐵, 𝑅)
for a given reference set 𝑅 ⊂ R𝑚 . A relevant implication is that
when adding solutions to a set the quality returned by these in-
dicators improves monotonically, under the assumption that the
reference point and/or reference set for the binary indicators are
unchanged.

2.2 Anytime Behavior
To analyze the anytime performance of a run 𝜔 of an algorithm
that keeps a solution archive we consider the performance trace
𝑄𝜔 (𝑡) → R+ that describes the trade-off between the quality of the
archive and the execution time 𝑡 ∈ R+. For this work, we consider
the archive quality in terms of the unary hypervolume indicator
defined in Equation 2, and execution time in terms of CPU time.

For analyzing the performance over multiple runs Ω we consider
the performance profile [12, 14, 15] given by:

𝑃Ω (𝑡, 𝑞) =
1
|Ω |

∑︁
𝜔 ∈Ω

𝐼 {𝑄𝜔 (𝑡) ≥ 𝑞} (5)

that denotes the probability of a run of the algorithm having an
archive of quality greater or equal to 𝑞 ∈ R at time 𝑡 ∈ R+.

To measure the anytime quality of multiple independents runs
Ω of an algorithm we aggregate those runs into a performance
profile and compute the quality measure given by its bi-dimensional
integral [15, 16], that is:∫ ∞

0

∫ 𝑡

0
𝑃Ω (𝑡, 𝑞) 𝑑𝑡 𝑑𝑞 (6)

where 𝑡 denotes the timeout for the runs.

3 INDICATOR-BASED BRANCH AND BOUND
Branch and bound algorithms implicitly visit all feasible solutions.
They recursively divide the solution space into subspaces, each of
which encapsulates a subproblem of the original problem. For the
purpose of this work we consider that each subproblem gives rise to
a lower and an upper bound [10, 19]. The lower bound corresponds
to a set of feasible and mutually non-dominated solutions that are
weakly dominated by the efficient solutions to the subproblem.
The upper bound corresponds to a set of mutually non-dominated
objective vectors that weakly dominates the efficient set to the
subproblem. Note that the branch and bound algorithm does not
require the use of a lower bound since the solutions of a lower bound
are eventually visited by the algorithm. However, finding the lower
bound solutions earlier and adding them to the archive can improve
the anytime performance of the branch and bound and lead to more
pruning, which may impact the runtime of the algorithm. This can
often outweigh the computational cost of calculating the lower
bound and lead to a better runtime.

The subspace division in a branch and bound algorithm is com-
monly represented as a dynamically generated search tree where
each node corresponds to a partial solution, e.g. a solution where
some decision variables have been set but not others, and a leaf

Algorithm 1: Eager branch-and-bound
Input :Root node 𝑟
Output :Solution set 𝑆

1 𝑆 ← getLowerBound(r)
2 𝑄 ← {𝑟 }
3 while 𝑄 ≠ ∅ do
4 node← selectNode(𝑄)

5 for branch ∈ getBranches(node) do
6 if 𝑆 ≯ getUpperBound(branch) then
7 𝑆 ← 𝑆 ∪ getLowerBound(branch)
8 𝑄 ← 𝑄 ∪ {branch}
9 end

10 end
11 end
12 return 𝑆

corresponds to a complete solution. Initially this tree contains only
the root node, i.e. the original solution space. A node of the search
tree is then processed at each iteration of the branch and bound
algorithm. This involves three main tasks: selecting the node to
process, computing the bounds, and branching from that node,
i.e. further subdividing the solution space if possible.

3.1 MOCO Branch and Bound Framework
Algorithm 1 defines the general framework for branch and bound
algorithms forMOCO that wewill consider in this work. It describes
an eager branch and bound design, meaning that the computation
of lower and upper bounds of a node occurs as soon as that node
is identified. By contrast, a lazy design only computes the bounds
of a node once that node is needed, i.e. when it is selected for
processing or when its upper bound is needed for node selection.
In our preliminary experiments, the eager design had generally
better runtime and anytime performance, and it also demanded
less memory. As such, we choose to discard the lazy design for this
work, and note that other approaches in the literature often use an
eager design as well [17, 19, 20]. We remark that 𝑆 in Algorithm 1
corresponds to the archive maintained by the branch and bound
algorithm.

3.2 Node Selection
Two common strategies for selecting the next node to be explored
are the depth-first selection (DFS) [17, 20] and the breadth-first
selection (BFS) [20] strategies. Both can be trivially implemented
within the framework of Algorithm 1 with a Last In First Out (LIFO)
queue and a First In First Out (FIFO) queue respectively. We remark,
that the BFS approach often suffers from memory issues since it
needs to keep a large amount of nodes in memory. On the other
hand, the DFS can easily get stuck deep in the tree, exploring solu-
tions that do not improve the quality of the archive significantly.
Nonetheless, both approaches can have good performance if the
subspace division order leads to optimal, or close to optimal, solu-
tions early on. Unfortunately, such orderings may not be available
for every problem or it may not always be clear which order is the
best since it can depend on the problem instance being solved [4]. A

GECCO ’21, July 10–14, 2021, Lille, France Alexandre D. Jesus, Luís Paquete, Bilel Derbel, and Arnaud Liefooghe

𝑓1

𝑓2

𝑢

𝑓1

𝑓2

𝑢

Figure 1: Illustration of the binary hypervolume indicator
(in gray) for the upper bound {𝑢} of two distinct nodes.

third strategy is the best-first selection (BeFS), which corresponds
to finding the most promising node in the queue. In single-objective
optimization this could, for example, correspond to finding the node
with the highest upper bound, since it suggests that searching in
that direction will lead to a solution with a better objective value. A
similar idea would be to select the node that may lead to a greater
improvement in the quality of the archive. Note that, finding better
solutions early, may not only lead to a better anytime performance,
but also to an improvement in the overall runtime of the algorithm
since other nodes can be pruned sooner.

In this work, we propose an indicator-based branch and bound
(I-BB) approach, which considers the use of quality indicators for
the BeFS strategy. In our approach, we consider that the “quality”
of a node is given by the quality of its upper bound with respect
to the archive. To measure this quality we can consider any binary
quality indicator that measures the quality of a solution set with
respect to another, such as the binary hypervolume indicator and
the 𝜀-indicator discussed in Section 2. Formally, given a queue 𝑄 of
branch and bound nodes, the archive 𝑆 , and assuming a maximizing
binary quality indicator 𝐼 (𝐴, 𝐵) → R with 𝐴, 𝐵 ⊂ R𝑚 that denotes
the quality of a set of objective vectors 𝐴 with respect to a solution
set 𝐵, we define the selectNode(Q) function for Algorithm 1 by:

selectNode(𝑄) = argmax
node∈𝑄

𝐼 (𝑈 (node), {𝑓 (𝑥) : 𝑥 ∈ 𝑆}) (7)

where𝑈 (node) denotes the upper bound of a node. As an example,
consider Figure 1 that illustrates the upper bound of two distinct
nodes and the calculation of the binary hypervolume indicator for
each. We recall that all efficient solutions to the subproblem are
weakly dominated by the upper bound. By selecting the node whose
upper bound gives the best value of binary hypervolume indicator,
in this case the topmost figure, we hope to find a solution that
provides a more substantial contribution to the archive.

Unfortunately, the BeFS strategy may also suffer from memory
issues like the BFS strategy. Another issue is that if the computation

of the binary quality indicator is costly, as is the case for the binary
hypervolume indicator with an increasing number of objectives,
having a large amount of nodes in the queue can lead to a long
selection time. Some implementation details, like caching previously
computed values, can help mitigate such issues, but they may not
be sufficient. As such, we also consider a Best-Depth-First Selection
(BeDFS) strategy, which only evaluates the nodes that are in the
deepest level of the search tree.

3.3 Other Aspects
There are two other key aspects for the implementation of a branch
and bound approach not discussed here: how the solution space
is divided, i.e. how branching occurs; and the computation of the
bounds. Since defining these aspects heavily depends on the prob-
lem being solved, they are discussed in the following section for
the considered multi-objective binary knapsack problem.

4 I-BB FOR MULTI-OBJECTIVE KNAPSACK
To validate our approach we conduct an empirical study on the
multi-objective binary knapsack problem. In this section, we de-
scribe the problem and instances considered for the study, as well
as the branch and bound implementation details for this problem.

4.1 Problem
For this study we consider the multi-objective binary knapsack
problem, which can be defined as follows:

argmax
𝑥 ∈{0,1}𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖𝑣
1
𝑖 , . . . ,

𝑛∑︁
𝑖=1

𝑥𝑖𝑣
𝑚
𝑖

)
(8)

s.t.
𝑛∑︁
𝑖=1

𝑥𝑖𝑐𝑖 ≤ 𝐶 (9)

where 𝑛 is the number of items for the knapsack problem, 𝑣 𝑗
𝑖
∈ Z+

denotes the value associated with item 𝑖 ∈ {1, . . . , 𝑛} for objective
function 𝑗 ∈ {1, . . . ,𝑚}, 𝑐𝑖 ∈ Z+ denotes the cost of item 𝑖 , and
𝐶 ∈ Z+ denotes the overall cost constraint.

We consider benchmark instances [2] with item values for the
objective functions 𝑣 𝑗

𝑖
and item cost values 𝑐𝑖 randomly generated

following a uniform distribution in the range [1, 1000]. Moreover,
the cost constraint is set to half of the sum of all the costs, that is:

𝐶 =
1
2

𝑛∑︁
𝑖=1

𝑐𝑖 (10)

4.2 I-BB Implementation Details
In the following sections we describe the implementation details of
the branch and bound algorithm with respect to branching, branch-
ing order, bounds computation and selection strategy.

4.2.1 Branching. We consider a dichotomic branching at each
node, where the root node corresponds to the empty knapsack,
i.e. no decision variable is set. Then, a branching operation corre-
sponds to setting the next unset decision variable to either 0 or 1.
Note that there is an exponential number of nodes with respect to
the problem size. We also considered a politomic branching that
sets the 𝑘 next unset decision variables to 0, and the 𝑘 + 1 unset
decision variable to 1. However, our preliminary results showed

On the Design and Anytime Performance of Indicator-based Branch
and Bound for Multi-objective Combinatorial Optimization GECCO ’21, July 10–14, 2021, Lille, France

that it rarely achieved better runtime or anytime performance. As
such, we choose to focus on the dichotomic branching.

4.2.2 Branching order. For the considered branching variants,
we need to define the order in which the decision variables are
set. One possibility is to consider a random order, which in our
empirical analysis is given by the default (random) ordering of
the items. Another possibility is to sort the decision variables be-
forehand according to a given ordering criteria. Importantly, our
implementation of the DFS and BFS selection strategies processes
first the children whose earlier variables are set to 1. As such, this
ordering criterion should order the decision variables such that the
first variables are more likely to be set to 1 in efficient solutions. In
this work, we consider the rank sum order Osum order [2], which is
denoted by the increasing order of the sums of the ranks for items
𝑖 = {1, . . . , 𝑛} given by the orders O 𝑗 = 𝑣

𝑗
𝑖
/𝑐𝑖 for each objective

𝑗 = {1, . . . ,𝑚}. Preliminary results comparing the Osum, Omax [2],
and Omin [2] orders, showed better anytime behavior for the former.
For other possible orders, we refer to [4] where various branching
orders and heuristics are analyzed.

4.2.3 Lower and upper bound. In the following we describe the
procedure used to compute the lower and upper bounds of a node.
Briefly, for a given partial solution we compute a number of feasible
extensions that correspond to feasible solutions to the knapsack
problem. These feasible extensions are first used to populate the
lower bound of a node. Although the lower bound is not required
for the branch and bound algorithm, having a diverse lower bound,
whose solutions are then added to the archive, can allow the algo-
rithm to prune nodes earlier, which often results in an improved
anytime behavior and runtime. Moreover, these feasible extensions
are then used to compute the upper bound of a node which is
fundamental for branch and bound approaches.

Consider a node whose partial solution is given by 𝑥 such that
the first 𝑘 ≤ 𝑛 decision variables are set to either 0 or 1, and
the remaining variables have not been set yet. Assume that this
partial solution is feasible with respect to the cost constraint, i.e.∑𝑘
𝑖=1 𝑥𝑖𝑐𝑖 ≤ 𝐶 . Then, an extension for each objective 𝑗 can be

obtained by Dantzig’s greedy algorithm [6]. In particular, assume
that the items from 𝑘 + 1 to 𝑛 are sorted in increasing order of the
ratio 𝑣 𝑗

𝑖
/𝑐𝑖 for an objective 𝑗 . Then an extension for that objective

function is given by adding all items from 𝑘 + 1 up to, but not
including, 𝑏 such that adding item 𝑏 would break the cost constraint.
The corresponding objective vector is given by

ℓ 𝑗 =

(
𝑘∑︁
𝑖=1

𝑥𝑖𝑣
1
𝑖 +

𝑏∑︁
𝑖=𝑘+1

𝑣1𝑖 , . . . ,
𝑘∑︁
𝑖=1

𝑥𝑖𝑣
𝑚
𝑖 +

𝑏∑︁
𝑖=𝑘+1

𝑣𝑚𝑖

)
(11)

In addition, to refine the lower bound with a more balanced trade-
off among the objectives, we consider the extension that is found
with Dantzig’s greedy algorithm [6] for the items from 𝑘 + 1 to 𝑛
sorted by the ratio (𝑣1

𝑖
+ . . . + 𝑣𝑚

𝑖
)/𝑐𝑖 . The objective vector of this

extension is denoted by ℓsum. The topmost illustration in Figure 2
shows the objective vectors ℓ1, ℓ2, and ℓsum for two objectives. Since
these extensions correspond to feasible solutions to the knapsack
problem they are included in the lower bound of the node. Also,
since the branching orders considered are fixed, we can precompute
all the necessary orders for Dantzig’s greedy algorithm.

𝑓1

𝑓2

𝑦 𝑙1

𝑙2

𝑙sum

𝑓1

𝑓2

𝑢1

𝑢2

𝑦

𝑢

Figure 2: Illustration of the image of the lower bound (top) in
the objective space {ℓ1, ℓ2, ℓ𝑤} for a nodewith partial objective
vector 𝑦, and the corresponding upper bound (bottom) given
by {𝑢}.

For the upper bound of a node, we consider non-feasible exten-
sions to the ℓ 𝑗 objective vectors. In particular, for each vector ℓ 𝑗
we add the fractional part of the item that violates the constraint,
to the 𝑗-th objective value, formally:

𝑢 𝑗 = ℓ
𝑗
𝑗
+𝐶 𝑗

𝑣
𝑗

𝑏

𝑐𝑏
(12)

where 𝐶 𝑗 is the residual cost of ℓ 𝑗 . An upper bound to the node is
then given by the objective vector:

𝑢 = (𝑢1, . . . , 𝑢𝑚) (13)

This upper bound is illustrated in Figure 2. A similar upper bound
was considered in [17].

4.2.4 Selection strategies. For this study we consider the DFS,
BFS, BeFS and BeDFS selection strategies described in Section 3.
Moreover, for the latter twowe consider two different binary quality
indicators: the binary hypervolume indicator, and the 𝜀-indicator
described in Section 2.

Since our upper bound is given by a single objective vector 𝑢,
the binary hypervolume computation can be formulated as a hy-
pervolume contribution calculation:

𝐻 (𝐴,𝑢, 𝑟) = 𝐻 (𝐴 ∪ {𝑢}, 𝑟) − 𝐻 (𝐴, 𝑟) (14)

For two objectives the hypervolume contribution can be calculated
in 𝑂 (log 𝜇), where 𝜇 is the number of solutions in the archive, if
the objective vectors of the archive solutions are kept sorted by
one of the objective values and data pertaining to the hypervolume
calculation with a dimension sweep is kept for each node. For
three objectives, it can be calculated in 𝑂 (𝜇) with the HV3D+-U
algorithm [13] if the objective vectors of the archive solutions are
stored in the data structure of the HV3D+ algorithm. For 4 or more
objectives, we use the WFG algorithm [21], with the sorting and

GECCO ’21, July 10–14, 2021, Lille, France Alexandre D. Jesus, Luís Paquete, Bilel Derbel, and Arnaud Liefooghe

slicing improvements discussed in that work, which computes the
hypervolume contribution in 𝑂 (𝜇𝑚/2 log 𝜇) for𝑚 objectives.

To compute the 𝜀-indicator we maintain the maximum values
for each objective among all solutions in the archive. Then, the
𝜀-indicator for a set with a single objective vector can be found in
𝑂 (𝑚) by dividing the maximum value for each objective by the
corresponding value of the objective vector whose quality we are
measuring. As such, calculating the 𝜀-indicator is expected to be
much faster than calculating the hypervolume contribution, which
should be particularly noticeable for a high number of objectives.

Note that the value of the quality indicator for the nodes in the
queue can be cached and kept in a priority queue. For a BeFS ap-
proach we need to keep a priority queue with all the nodes, whereas
for BeDFS we would need a priority queue for each level of the
search tree. However, for a dichotomic branching, the BeDFS strat-
egy does not need to keep the values cached since after selecting
the best node for a level there is only one node left.

Unfortunately, if the archivemaintained by the branch and bound
changes, then the cached values may need to be updated, and the
priority queue recomputed, which can be detrimental to the per-
formance of the algorithm if it happens frequently. For the BeFS
strategy, our preliminary experiments suggest that changes to the
maximum objective values were relatively rare. As such, for the
𝜀-indicator BeFS we find it is best to keep the nodes in the priority
queue at all times. For the binary hypervolume indicator we see
that once the branch and bound reaches a relatively stable state
where updates to the archive are rare, then it is worth keeping
the items in a priority queue. However, when the archive is being
regularly updated, recomputing the priority queue is detrimental
to the performance of the algorithm. To balance both scenarios, we
build and maintain a priority queue after the algorithm makes 10
consecutive calls to the selection methodology without updating
the priority queue. However, if a solution is added to the archive,
we discard the priority queue and rely on looping over all values of
a vector to find the most promising node. The value 10 was chosen
empirically during preliminary testing. Finally, to avoid unneces-
sary quality indicator computations when a priority queue is not
used, we only recompute the quality indicator of the nodes whose
previously cached value was better than the current best.

5 EMPIRICAL STUDY
Our empirical study focuses on comparing the performance of the
various selection strategies described in the previous section with
regards to two aspects of performance: the runtime of the approach,
i.e. the time it takes to identify the efficient set, and its anytime
quality, i.e. the quality of the archive at any given time.

To summarize, we consider the following alternatives for the
implementation of the branch and bound approaches:
• Branching: Dichotomic;
• Branching order: Random (Default) or Rank Sum;
• Selection strategy: DFS, BFS, 𝜀-indicator BeFS, 𝜀-indicator
BeDFS, Hypervolume BeFS, or Hypervolume BeDFS.

The algorithms were implemented in C++20, compiled with GCC
10.2.0, and the experiments were carried out in parallel, one per
thread, on a machine with two Intel(R) Xeon(R) Silver 4210R
processors. The algorithms had a timeout of 300 seconds and an 8Gb

memory limit. The results shown below use instances of sizes 𝑛 ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200}, number of objectives𝑚 ∈
{2, 3, 5, 7}. For each combination of these parameters 10 instances
were independently generated.

5.1 Runtime Analysis
Figure 3 shows the results of the average runtime for instances with
a varying number of objectives, variables, and branching order. The
runtime values are only shown for cases where the algorithms
found the efficient set in all 10 generated instances for that particu-
lar combination of parameters. The results for two objectives (far
left) suggest that the DFS strategy has the worst runtime perfor-
mance for the default order, and that the BFS and the hypervolume
BeFS strategies have the worst runtime performance for the rank
sum order. As the number of objectives increases we can see that
the runtime performance of the hypervolume BeFS and BeDFS
strategies worsens substantially. This is to be expected due to the
increasing complexity of the binary hypervolume calculation. We
see that the 𝜀-indicator BeFS and BeDFS approaches do not have
this issue and that they often show the best, or second best, runtime.
It is also worth noting that the runtime for the random order is
generally similar to that of the rank sum order, and in fact a better
runtime can be observed for some instances with 5 and 7 objectives.

5.2 Anytime Analysis
Figure 4 shows the anytime performance traces, with respect to
the normalized hypervolume and CPU time, for instances of size
𝑛 = 100 and 2, 3, 5, and 7 objectives. Note that no approach ob-
tained the efficient set for the given time and memory limits. The
hypervolume is normalized with respect to the minimum and max-
imum values computed for each instance during the execution of
the branch and bound approaches, such that the minimum hyper-
volume considered for an instance is given by the hypervolume of
the lower bound of the empty knapsack. For 2 objectives, we can
see that the I-BB strategies, in particular the hypervolume BeFS
strategy, show a very good anytime behavior. Moreover, we can
see that for the default (random) order the I-BB strategies generally
obtain the best anytime performance. By contrast, for the rank sum
order, we see that the DFS strategy shows the overall best anytime
performance. However, the results suggest that the I-BB BeFS strate-
gies can surpass the DFS strategy when given enough time, as is the
case for 2 and 3 objectives. The performance of the hypervolume
based I-BB strategies shows a better anytime performance than the
𝜀-indicator based I-BB strategies for 2 objectives, similar anytime
performance for 3 objectives, and worse performance for 5 and 7
objectives. This is consistent with the increased complexity of the
binary hypervolume indicator. Note that for 2 and 3 objectives the
hypervolume based I-BB approaches for a default order have an
anytime performance that is similar to the best anytime perfor-
mance for a good branching order. For 5 and 7 objectives the results
are not as good but still promising. The results were consistent for
all tested instances with problem size 𝑛 = 100.

Table 1 shows the ratio of instances for which a given selection
strategy had the best anytime quality as given by Equation 6, e.g. a
ratio of 0.6 means that for 60% of the tested instances the given

On the Design and Anytime Performance of Indicator-based Branch
and Bound for Multi-objective Combinatorial Optimization GECCO ’21, July 10–14, 2021, Lille, France

2 objectives 3 objectives 5 objectives 7 objectives

D
e

fa
u

lt b
ra

n
ch

in
g

 o
rd

e
r

R
a

n
k su

m
 b

ra
n

ch
in

g
 o

rd
e

r

10 20 30 40 50 10 20 30 40 10 15 20 25 30 10 15 20 25

1e-02

1e+00

1e+02

1e-02

1e+00

1e+02

Number of variables

C
P

U
 t
im

e
 (

s)

Selection Strategy
BFS

DFS

Hypervolume BeDFS

Hypervolume BeFS

ε-indicator BeDFS

ε-indicator BeFS

Figure 3: Runtime averages for varying number of objectives, variables, branching orders, and selection strategies. For each
combination, the results are not shown if at least one instance did not finish within the 300 seconds timeout.

2 objectives 3 objectives 5 objectives 7 objectives

D
e

fa
u

lt b
ra

n
ch

in
g

 o
rd

e
r

R
a

n
k su

m
 b

ra
n

ch
in

g
 o

rd
e

r

1e-03 1e-01 1e+01 1e-03 1e-01 1e+01 1e-03 1e-01 1e+01 1e-03 1e-01 1e+01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CPU time (s)

N
o
rm

a
liz

e
d
 H

yp
e
rv

o
lu

m
e

Selection Strategy
BFS

DFS

Hypervolume BeDFS

Hypervolume BeFS

ε-indicator BeDFS

ε-indicator BeFS

Figure 4: Anytime performance trace of the branch and bound approaches for instances with varying number of objectives,
and problem size 𝑛 = 100.

approach had the best anytime quality. Note that the I-BB strate-
gies are always the best for the default (random) branching order.
For 2 and 3 objectives we see that the hypervolume based I-BB
approaches more often have the best anytime quality, whereas for
5 and 7 objectives the 𝜀-indicator based I-BB approaches are better.

Interestingly, the hypervolume based I-BB is capable of achieving a
better anytime quality than its 𝜀-indicator counterpart for 5 and 7
objectives when 𝑛 = 200. This suggests that the 𝜀-indicator based
I-BB is not suited for increasing the quality of the archive in terms
of hypervolume for large problem sizes.

GECCO ’21, July 10–14, 2021, Lille, France Alexandre D. Jesus, Luís Paquete, Bilel Derbel, and Arnaud Liefooghe

Table 1: Ratio for the number of times a given selection strategy obtains the best anytime quality. Best values are in bold.

Branching Order 𝑚 𝑛 BFS DFS HV BeFS HV BeDFS 𝜀-indicator BeFS 𝜀-indicator BeDFS

Default 2 50 0.0 0.0 1.0 0.0 0.0 0.0
100 0.0 0.0 1.0 0.0 0.0 0.0
200 0.0 0.0 0.8 0.2 0.0 0.0

3 50 0.0 0.0 0.9 0.1 0.0 0.0
100 0.0 0.0 0.4 0.0 0.6 0.0
200 0.0 0.0 0.0 1.0 0.0 0.0

5 50 0.0 0.0 0.0 0.0 1.0 0.0
100 0.0 0.0 0.0 0.0 1.0 0.0
200 0.0 0.0 0.0 1.0 0.0 0.0

7 50 0.0 0.0 0.0 0.0 1.0 0.0
100 0.0 0.0 0.0 0.0 1.0 0.0
200 0.0 0.0 0.0 1.0 0.0 0.0

Rank Sum 2 50 0.0 0.2 0.8 0.0 0.0 0.0
100 0.0 0.2 0.8 0.0 0.0 0.0
200 0.0 1.0 0.0 0.0 0.0 0.0

3 50 0.0 0.8 0.1 0.0 0.0 0.1
100 0.0 0.8 0.0 0.0 0.2 0.0
200 0.0 1.0 0.0 0.0 0.0 0.0

5 50 0.0 0.1 0.0 0.0 0.9 0.0
100 0.0 0.9 0.0 0.0 0.1 0.0
200 0.0 1.0 0.0 0.0 0.0 0.0

7 50 0.0 0.0 0.0 0.0 1.0 0.0
100 0.0 1.0 0.0 0.0 0.0 0.0
200 0.0 1.0 0.0 0.0 0.0 0.0

For the rank sum branching order, we see that the DFS strategy
often shows the best anytime quality, as expected from the previ-
ous results. Still, we see that the I-BB approaches can sometimes
have better anytime performance for smaller problem sizes. Further
analysis of the instances with problem size 𝑛 = 200, where our
I-BB approach was never able to get the best anytime performance,
suggests that if given enough time (and memory) the I-BB BeFS
approaches would surpass the quality obtained by the DFS strategy.

6 CONCLUSIONS
In this article, we proposed an indicator-based branch and bound
(I-BB) approach for multi-objective combinatorial optimization and
analyzed it both in terms of runtime and anytime, i.e. heuristic,
behavior. Our empirical results showed very promising results in
terms of anytime performance, in particular when considering a
random ordering of the decision variables. Moreover, the results
indicated that the binary hypervolume I-BB had a good anytime per-
formance for a small number of objectives, but that the 𝜀-indicator
I-BB showed better performance for a larger number of objectives.
The results also highlighted some weaknesses of the I-BB that are
worth investigating in the future. In particular, we note that the
I-BB approach cannot always match the anytime behavior of a
simple DFS strategy when considering a good branching order, par-
ticularly for larger problem sizes. However, a good branching order
might not always be available, or may be difficult to design for new
problem classes. Nonetheless, we see that the quality of the archive
for the I-BB BeDFS strategies tends to quickly improve in the early

stages of the search process but then stagnates, whereas for the
BeFS strategies the quality is not as good initially but keeps improv-
ing throughout the search. As such, one possibility to improve the
performance of our I-BB approach could be to consider a hybrid
selection strategy that combines both the BeFS and BeDFS strate-
gies. Another possibility would be to consider the use of heuristic
approaches to approximately solve some of the subproblems, in
particular those where the solutions found are only expected to
marginally improve the quality of the solution archive. Moreover, it
would be interesting to study different settings in terms of quality
indicators and bound definitions. Finally, it would be relevant to
study the performance of I-BB for other problem classes, particu-
larly real-world problems, and to compare it against state-of-the-art
heuristics, including multi-objective local search and evolutionary
algorithms.

ACKNOWLEDGMENTS
This work was partially supported by the PICS project MOCO-
SEARCH co-funded by the French National Center for Scientific
Research (CNRS) and the Portuguese Foundation for Science and
Technology (FCT). The first author further acknowledges the FCT
for Ph.D. studentship SFRH/BD/132275/2017 co-funded by the Eu-
ropean Social Fund and by the State Budget of the Portuguese
Ministry of Education and Science. This work was partially funded
by national funds through the FCT within the scope of the project
CISUC - UID/CEC/00326/2020 and by the European Social Fund,
through the Regional Operational Program Centro 2020.

On the Design and Anytime Performance of Indicator-based Branch
and Bound for Multi-objective Combinatorial Optimization GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Johannes Bader and Eckart Zitzler. 2010. HypE: An Algorithm for Fast

Hypervolume-Based Many-Objective Optimization. Evolutionary Computation
19, 1 (July 2010), 45–76. https://doi.org/10.1162/EVCO_a_00009

[2] Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten. 2009. Solving Ef-
ficiently the 0-1 Multi-Objective Knapsack Problem. Computers & Operations
Research 36, 1 (Jan. 2009), 260–279. https://doi.org/10.1016/j.cor.2007.09.009

[3] Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Mul-
tiobjective Selection Based on Dominated Hypervolume. European Journal of
Operational Research 181, 3 (Sept. 2007), 1653–1669. https://doi.org/10.1016/j.ejor.
2006.08.008

[4] Audrey Cerqueus, Xavier Gandibleux, Anthony Przybylski, and Frédéric Saubion.
2017. On Branching Heuristics for the Bi-Objective 0/1 Unidimensional Knapsack
Problem. Journal of Heuristics 23, 5 (Oct. 2017), 285–319. https://doi.org/10.1007/
s10732-017-9346-9

[5] Van-Dat Cung, Mhand Hifi, and Bertrand Le Cun. 2000. Constrained Two-
Dimensional Cutting Stock Problems a Best-First Branch-and-Bound Algorithm.
International Transactions in Operational Research 7, 3 (Aug. 2000), 185–210. https:
//doi.org/10.1111/j.1475-3995.2000.tb00194.x

[6] George B. Dantzig. 1957. Discrete-Variable Extremum Problems. Operations
Research 5, 2 (April 1957), 266–288. https://doi.org/10.1287/opre.5.2.266

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (April 2002), 182–197. https://doi.org/10.1109/
4235.996017

[8] Jérémie Dubois-Lacoste, Manuel López-Ibáñez, and Thomas Stützle. 2015. Any-
time Pareto Local Search. European Journal of Operational Research 243, 2 (June
2015), 369–385. https://doi.org/10.1016/j.ejor.2014.10.062

[9] Matthias Ehrgott. 2005. Multicriteria Optimization (second ed.). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-27659-9

[10] Matthias Ehrgott and Xavier Gandibleux. 2001. Bounds and Bound Sets for
Biobjective Combinatorial Optimization Problems. In Multiple Criteria Decision
Making in the New Millennium. Springer, Berlin, Heidelberg, 241–253. https:
//doi.org/10.1007/978-3-642-56680-6_22

[11] José Rui Figueira, Carlos M. Fonseca, Pascal Halffmann, Kathrin Klamroth, Luís
Paquete, Stefan Ruzika, Britta Schulze, Michael Stiglmayr, and David Willems.
2017. Easy to Say They Are Hard, but Hard to See They Are Easy- Towards a
Categorization of Tractable Multiobjective Combinatorial Optimization Problems.
Journal of Multi-Criteria Decision Analysis 24, 1-2 (Jan. 2017), 82–98. https:
//doi.org/10.1002/mcda.1574

[12] Viviane Grunert da Fonseca, Carlos M. Fonseca, and Andreia O. Hall. 2001.
Inferential Performance Assessment of Stochastic Optimisers and the Attainment
Function. In Evolutionary Multi-Criterion Optimization (EMO 2001). Springer,
Berlin, Heidelberg, 213–225. https://doi.org/10.1007/3-540-44719-9_15

[13] Andreia P. Guerreiro and Carlos M. Fonseca. 2018. Computing and Updating
Hypervolume Contributions in Up to Four Dimensions. IEEE Transactions on

Evolutionary Computation 22, 3 (June 2018), 449–463. https://doi.org/10.1109/
TEVC.2017.2729550

[14] Holger H. Hoos and Thomas Stützle. 2005. Stochastic Local Search: Foundations &
Applications. Morgan Kaufmann Publishers, San Francisco, CA, USA.

[15] Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete. 2020. Algo-
rithm Selection of Anytime Algorithms. In Proceedings of the 2020 Genetic and Evo-
lutionary Computation Conference (GECCO ’20). Association for Computing Ma-
chinery, New York, NY, USA, 850–858. https://doi.org/10.1145/3377930.3390185

[16] Manuel López-Ibáñez and Thomas Stützle. 2014. Automatically Improving the
Anytime Behaviour of Optimisation Algorithms. European Journal of Operational
Research 235, 3 (June 2014), 569–582. https://doi.org/10.1016/j.ejor.2013.10.043

[17] Ulungu-Ekunda Lukata and Jacques Teghem. 1997. Solving Multi-Objective
Knapsack Problem by a Branch-and-Bound Procedure. In Multicriteria Analysis,
João Clímaco (Ed.). Springer, Berlin, Heidelberg, 269–278. https://doi.org/10.
1007/978-3-642-60667-0_26

[18] Luís Paquete, Tommaso Schiavinotto, and Thomas Stützle. 2007. On Local Optima
in Multiobjective Combinatorial Optimization Problems. Annals of Operations
Research 156, 1 (Aug. 2007), 83. https://doi.org/10.1007/s10479-007-0230-0

[19] Anthony Przybylski and Xavier Gandibleux. 2017. Multi-Objective Branch and
Bound. European Journal of Operational Research 260, 3 (Aug. 2017), 856–872.
https://doi.org/10.1016/j.ejor.2017.01.032

[20] Michaël Visée, Jacques Teghem, Marc Pirlot, and E.L. Ulungu. 1998. Two-Phases
Method and Branch and Bound Procedures to Solve the Bi-Objective Knapsack
Problem. Journal of Global Optimization 12, 2 (March 1998), 139–155. https:
//doi.org/10.1023/A:1008258310679

[21] Lyndon While, Lucas Bradstreet, and Luigi Barone. 2012. A Fast Way of Calcu-
lating Exact Hypervolumes. IEEE Transactions on Evolutionary Computation 16, 1
(Feb. 2012), 86–95. https://doi.org/10.1109/TEVC.2010.2077298

[22] Eckart Zitzler. 1999. Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD Thesis. Swiss Federal Institute of Technology
Zurich.

[23] Eckart Zitzler and SimonKünzli. 2004. Indicator-Based Selection inMultiobjective
Search. In Parallel Problem Solving from Nature — PPSN VIII. Springer, Berlin,
Heidelberg, 832–842.

[24] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective Optimization Using
Evolutionary Algorithms — A Comparative Case Study. In Parallel Problem
Solving from Nature — PPSN V. Springer, Berlin, Heidelberg, 292–301. https:
//doi.org/10.1007/BFb0056872

[25] Eckart Zitzler, Lothar Thiele, and Johannes Bader. 2010. On Set-Based Multiob-
jective Optimization. IEEE Transactions on Evolutionary Computation 14, 1 (Feb.
2010), 58–79. https://doi.org/10.1109/TEVC.2009.2016569

[26] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane
Grunert da Fonseca. 2003. Performance Assessment of Multiobjective Optimizers:
An Analysis and Review. IEEE Transactions on Evolutionary Computation 7, 2
(April 2003), 117–132. https://doi.org/10.1109/TEVC.2003.810758

https://doi.org/10.1162/EVCO_a_00009
https://doi.org/10.1016/j.cor.2007.09.009
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1007/s10732-017-9346-9
https://doi.org/10.1007/s10732-017-9346-9
https://doi.org/10.1111/j.1475-3995.2000.tb00194.x
https://doi.org/10.1111/j.1475-3995.2000.tb00194.x
https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.ejor.2014.10.062
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/978-3-642-56680-6_22
https://doi.org/10.1007/978-3-642-56680-6_22
https://doi.org/10.1002/mcda.1574
https://doi.org/10.1002/mcda.1574
https://doi.org/10.1007/3-540-44719-9_15
https://doi.org/10.1109/TEVC.2017.2729550
https://doi.org/10.1109/TEVC.2017.2729550
https://doi.org/10.1145/3377930.3390185
https://doi.org/10.1016/j.ejor.2013.10.043
https://doi.org/10.1007/978-3-642-60667-0_26
https://doi.org/10.1007/978-3-642-60667-0_26
https://doi.org/10.1007/s10479-007-0230-0
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1023/A:1008258310679
https://doi.org/10.1023/A:1008258310679
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1109/TEVC.2009.2016569
https://doi.org/10.1109/TEVC.2003.810758

	Abstract
	1 Introduction
	2 Background
	2.1 Concepts and Notation for MOCO
	2.2 Anytime Behavior

	3 Indicator-based branch and bound
	3.1 MOCO Branch and Bound Framework
	3.2 Node Selection
	3.3 Other Aspects

	4 I-BB for Multi-objective Knapsack
	4.1 Problem
	4.2 I-BB Implementation Details

	5 Empirical Study
	5.1 Runtime Analysis
	5.2 Anytime Analysis

	6 Conclusions
	Acknowledgments
	References

