
Algorithm Selection of Anytime Algorithms∗

Alexandre D. Jesus

Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9188 - CRIStAL, F-59000 Lille, France

University of Coimbra, CISUC, DEI, Coimbra, Portugal

ajesus@dei.uc.pt

Arnaud Liefooghe

JFLI - CNRS IRL 3527, University of Tokyo, Tokyo, Japan

arnaud.liefooghe@univ-lille.fr

Bilel Derbel

Univ. Lille, CNRS, Centrale Lille, Inria,

UMR 9189 - CRIStAL, F-59000 Lille, France

bilel.derbel@univ-lille.fr

Luís Paquete

University of Coimbra, CISUC, DEI, Coimbra, Portugal

paquete@dei.uc.pt

ABSTRACT
Anytime algorithms for optimization problems are of particular

interest since they allow to trade off execution time with result

quality. However, the selection of the best anytime algorithm for

a given problem instance has been focused on a particular budget

for execution time or particular target result quality. Moreover, it

is often assumed that these anytime preferences are known when

developing or training the algorithm selection methodology. In this

work, we study the algorithm selection problem in a context where

the decision maker’s anytime preferences are defined by a general

utility function, and only known at the time of selection. To this end,

we first examine how to measure the performance of an anytime

algorithm with respect to this utility function. Then, we discuss

approaches for the development of selection methodologies that

receive a utility function as an argument at the time of selection.

Then, to illustrate one of the discussed approaches, we present a

preliminary study on the selection between an exact and a heuristic

algorithm for a bi-objective knapsack problem. The results show

that the proposed methodology has an accuracy greater than 96%

in the selected scenarios, but we identify room for improvement.

CCS CONCEPTS
• Computing methodologies → Search methodologies; Learn-
ing settings;

KEYWORDS
Algorithm Selection · Anytime Algorithms · Anytime Performance

Measure

∗
This is the author’s version of the work. It is made available for your personal use.

Not for redistribution. The definitive Version of Record was published in “GECCO

’20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference”,

https://doi.org/10.1145/3377930.3390185.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00

https://doi.org/10.1145/3377930.3390185

ACM Reference Format:
Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete. 2020.

Algorithm Selection of Anytime Algorithms. In Genetic and Evolutionary
Computation Conference (GECCO ’20), July 8–12, 2020, Cancún, Mexico.ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3377930.3390185

1 INTRODUCTION
Anytime algorithms [4, 21] are of interest in various domains since

they allow a decision maker to trade-off execution time with so-

lution quality. In addition, many anytime algorithms often exist

for a given problem. For example, evolutionary algorithms and

other search heuristics can often return a solution if interrupted at

any time. Unfortunately, there is usually no single algorithm that

always shows the best solution quality for all execution times and

instances. As a result, when presented with a new problem instance,

a decision maker is interested in selecting which algorithm to use.

When selecting the best anytime algorithm, a decision maker

is typically also interested in defining its preferences with respect

to the interruption of the algorithm, which we denote anytime
preferences. For example, consider a real-time system that receives

problem instances to solve. For some instances, the system needs

to return a solution within a short amount of time, e.g. 1 second.

For other instances, the system has more time, e.g. 60 seconds,

while for others, the exact time depends on external factors that are

not yet fully established, but it is known that the algorithm will be

interrupted between two time points, e.g. between 1 and 60 seconds.

Since the choice of an algorithm likely depends on the available

time budget, a selection methodology should take this knowledge

into account.

When the anytime preferences can change between calls to the

selection methodology, as in the previous example, we say that we

have dynamic anytime preferences. Otherwise, we say static anytime
preferences. Anytime preferences can be defined with respect to

measurements other than time, e.g. target solution quality, or with

respect to multiple measurements, e.g. target solution quality and

available time budget. For this work, we consider that the anytime

preferences are characterized by a utility function𝑤 : 𝑇 ×𝑄 → R+
0

that denotes how likely the algorithm is to be interrupted at a

particular time 𝑡 ∈ 𝑇 and solution quality 𝑞 ∈ 𝑄 .
In this work, we are interested in studying the algorithm selection

problem [18] for anytime algorithms, while allowing for dynamic

anytime preferences. In particular, we study the following two

aspects: (i) the definition of performance measures for anytime

https://doi.org/10.1145/3377930.3390185
https://doi.org/10.1145/3377930.3390185
https://doi.org/10.1145/3377930.3390185

GECCO ’20, July 8–12, 2020, Cancún, Mexico Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete

algorithms that take into account the anytime preferences denoted

by a utility function𝑤 ; and (ii) the design of selectionmethodologies

that consider dynamic anytime preferences. We note that numerous

selection methodologies can be found in the literature, see [10, 11]

for a review. However, up to our knowledge, none consider the

characterization of the anytime preferences of the decision maker

by a utility function, nor the setting of anytime preferences at the

time of selection.

The remainder of this paper is organized as follows. In Section 2,

we introduce anytime algorithms and notions related to the anytime

performance of such algorithms. In Section 3, we describe perfor-

mance measures for anytime algorithms with respect to possible

definitions of the utility function 𝑤 , and discuss their theoreti-

cal properties. In Section 4, we discuss the possible approaches

to the algorithm selection problem with respect to dynamic any-

time preferences. In Section 5, we present a preliminary study on

the selection between an exact and a heuristic algorithm for a

bi-objective knapsack problem to illustrate and study a concrete

selection methodology based on one of the approaches discussed

in Section 4. Finally, we summarize the results of this work and

discuss possible directions for future work in Section 6.

2 ANYTIME ALGORITHMS
Anytime algorithms [4, 21] offer a trade off between execution

time and solution quality, since they can return a solution when

stopped at any time. Many existing algorithms to solve optimization

problems are anytime since they can return the best solution found

when interrupted, e.g. the best solution found so far by evolutionary

algorithms and other search heuristics. Throughout this work we

assume that the domain for execution time is denoted by a totally

ordered set𝑇 , such that for any two time steps 𝑡, 𝑡 ′ ∈ 𝑇 the relation

𝑡 < 𝑡 ′ means that the moment 𝑡 happens earlier than the moment 𝑡 ′.
Likewise, the domain of solution quality is denoted by a totally

ordered set 𝑄 , where the relation 𝑞 < 𝑞′ between any two values

𝑞, 𝑞′ ∈ 𝑄 denotes that 𝑞 is worse than 𝑞′ to the decision maker.

To study the performance of a single run of an anytime algorithm

we define a performance trace that describes the trade-off between

solution quality and execution time. A run here refers to a single

execution of an algorithm on a particular instance. The set of all

runs of an algorithm 𝑎 is denoted by Ω𝑎 .

Definition 2.1 (Performance Trace). The performance trace of a
run 𝑟 ∈ Ω𝑎 of an algorithm 𝑎 is defined by a function 𝐾𝑎,𝑟 : 𝑇 → 𝑄

that maps execution time to the quality of the solution that would

be returned if the algorithm was interrupted at that time.

If every run of an anytime algorithm 𝑎 gives a monotonic per-

formance trace, that is

𝑡1 < 𝑡2 =⇒ 𝐾𝑎,𝑟 (𝑡1) ≥ 𝐾𝑎,𝑟 (𝑡2) ∀𝑟 ∈ Ω𝑎 ∀𝑡1, 𝑡2 ∈ 𝑇
then algorithm 𝑎 is said to have monotonic behavior. Otherwise,
algorithm 𝑎 is said to have non-monotonic behavior. Algorithmswith

non-monotonic behavior can typically be made to have monotonic

behavior by keeping the best solution in memory. On the other

hand, this may not be possible if the quality of a solution cannot be

easily measured. For example, consider an evolutionary algorithm

to optimize a function. If this function is expensive to evaluate or

if it is not available during the execution, the algorithm may need

R
es

ul
t

qu
al

it
y

(g
re

at
er

is
be

tt
er

)

Time

Run 1
Run 2
Run 3

R
es

ul
t

qu
al

it
y

(g
re

at
er

is
be

tt
er

)

Time

3/3

3/3 3/3

3/3 3/32/3

2/3

2/3

2/3
2/3

1/3

1/3

1/3 1/3

1/3
0/3

0/3
0/3 0/3

0/3

Figure 1: On the left the performance traces of three runs of
an algorithm. On the right the corresponding performance
profile for these runs.

to consider an approximation function to evaluate the fitness of

the individuals. If this approximation is not consistent with the

original function, e.g. if a change to the decision variables results in

an increase in quality for the approximation function but a decrease

in quality for the real function, then the algorithm might replace

solutions of higher real quality by solutions with worse real quality.

As a result the algorithm may present non-monotonic behavior.

The remaining definitions in this section and in Section 3 generalize

for both monotonic and non-monotonic behavior.

Running the algorithm for different instances and/or executing

it multiple times on the same instance, will likely result in differ-

ent performance traces. Thus, to characterize the behavior of an

algorithm over different runs we define a performance profile.

Definition 2.2 (Performance Profile). The performance profile of
an algorithm 𝑎 over a set of runs 𝑅 ⊆ Ω𝑎 is defined by a function

𝑃𝑎,𝑅 (𝑡, 𝑞) =
1

|𝑅 |
∑
𝑟 ∈𝑅

𝐼 {𝐾𝑎,𝑟 (𝑡) ≥ 𝑞}

that denotes the probability of a run of the algorithm finding a

solution of quality greater or equal to 𝑞 ∈ 𝑄 at time 𝑡 ∈ 𝑇 .

In Figure 1, on the left-hand side, we illustrate the performance

traces of three runs of an algorithm, and on the right-hand side we

show the corresponding performance profile over those runs. This

is similar to a plot of the empirical attainment function [14].

The definition of a performance profile as a conditional prob-

ability function has been previously considered in [9], denoted

by run time distribution, and in [2] through the use of the empirical
attainment function [8]. However, these definitions consider the

probability of finding a solution of quality greater or equal to 𝑞 at,

or before (whereas ours is only at) execution time 𝑡 . Note that our

definition of a performance profile is equivalent to these definitions

if one assumes monotonic behavior.

Lastly, we note that the aggregation of different performance

traces into a single profile should be carefully planned [9, 21]. For

example, if the considered instances have different solution quality

domains, then their aggregation may not be meaningful. One possi-

bility to mitigate this issue is, for example, to consider the relative

quality of a solution with respect to the optimal.

Algorithm Selection of Anytime Algorithms GECCO ’20, July 8–12, 2020, Cancún, Mexico

3 MEASURING THE PERFORMANCE OF AN
ANYTIME ALGORITHM

The definition of a performance measure, which describes the per-

formance of an anytime algorithm as a single value, is a key aspect

for the development of an automatic selection methodology. More-

over, we are also interested in defining such a performance measure

with respect to the anytime preferences of the decision maker. In

this work, we assume that the anytime preferences of a decision

maker are characterized by a utility function 𝑤 : 𝑇 × 𝑄 → R+
0

that for every combination of time and solution quality returns a

non-negative scalar value that describes its preferences.

In the following, we start by describing logical relations between

performance profiles. Then, we formulate performance measures

for particular domains of 𝑇 and 𝑄 , and for a bounded function𝑤 .

Lastly, we discuss the properties of these measures with respect to

the aforementioned logical relations. To make the reading easier

we will denote a performance profile 𝑃𝑎,𝑅 simply by 𝑃 .

3.1 Logical Relations
The following logical relation between two performance profiles

with respect to a utility function𝑤 is considered:

Definition 3.1 (≥𝑤 pre-order). Given two performance profiles

𝑃 and 𝑃 ′, and a utility function 𝑤 : 𝑇 × 𝑄 → R+
0
, we define the

relation 𝑃 ≥𝑤 𝑃 ′ iff for every 𝑡 ∈ 𝑇 and 𝑞 ∈ 𝑄 where𝑤 (𝑡, 𝑞) > 0, it

holds that 𝑃 (𝑡, 𝑞) ≥ 𝑃 ′(𝑡, 𝑞).
The above relation induces a partial order. Thus, we can define

the following relations between two performance profiles:

𝑃 =𝑤 𝑃 ′ ⇐⇒ 𝑃 ≥𝑤 𝑃 ′ ∧ 𝑃 ′ ≥𝑤 𝑃 (Equality)

𝑃 >𝑤 𝑃 ′ ⇐⇒ 𝑃 ≥𝑤 𝑃 ′ ∧ 𝑃 ′ ≱𝑤 𝑃 (Superiority)

𝑃 ∥𝑤 𝑃 ′ ⇐⇒ 𝑃 ≱𝑤 𝑃 ′ ∧ 𝑃 ′ ≱𝑤 𝑃 (Incomparability)

The usefulness of these relations is linked to the characterization

of the performance profiles. In particular, for an algorithm selection

methodology, we are interested in comparing algorithms to solve a

particular instance. Then, we should compare performance profiles

that describe the expected behavior of an algorithm on that instance.

3.2 Performance Measures
In this section we are interested in defining performance measures

that characterize a performance profile as a single (scalar) value.

These measures should take into account the anytime preferences

of the decision maker. Moreover, we argue that it is desirable that

such performance measures are order preserving with respect to

the ≥𝑤 pre-order described in the previous section, and that we

are able to differentiate between incomparable profiles, i.e. allow

incomparable profiles to have different performancemeasure values,

as it is likely that the anytime algorithms considered for selection

have incomparable performance profiles.

Up until this point, we have considered general domains𝑇 and𝑄 ,

as well as a generally defined utility function𝑤 . However, to define

our performance measures we need to restrict their definitions. In

particular, we assume that domains 𝑇 and 𝑄 are either continuous

or discrete. An example of a continuous domain 𝑇 is CPU-time,

while an example of a discrete domain 𝑇 is the number of function

evaluations. To guarantee that our measures return a finite value

we restrict the definition of utility function𝑤 to a region bounded

by finite lower and upper bounds on time and quality, as follows

𝑤 (𝑡, 𝑞) →
{
R+
0

if (𝑡ℓ ≤ 𝑡 ≤ 𝑡𝑢) ∧ (𝑞ℓ ≤ 𝑞 ≤ 𝑞𝑢)
0 otherwise

(1)

where 𝑡ℓ and 𝑡𝑢 are the lower and upper bounds on time, and 𝑞ℓ
and 𝑞𝑢 are the lower and upper bounds on quality.

We show in Table 1, the performance measures for the different

combinations of continuous and discrete domains, as well as, values

of 𝑡ℓ , 𝑡𝑢 , 𝑞ℓ , and 𝑞𝑢 , with respect to a helper function

ℎ𝑤,𝑃 (𝑡, 𝑞) = 𝑤 (𝑡, 𝑞)𝑃 (𝑡, 𝑞) (2)

where 𝑃 is the performance profile whose performance we wish

to measure, and 𝑤 is a utility function describing the anytime

preferences of the decision maker according to Equation 1.

The measure for continuous domains𝑇 and𝑄 , and strict inequal-

ities between the lower and upper bounds, is similar to the notion

of weighted hypervolume discussed in [15] to measure the quality

of a performance trace. The main differences are that our definition

allows for algorithms with non-monotonic behavior, and that it is

defined for a performance profile rather than a performance trace.

To characterize and study these measures we focus on the case

where both domains 𝑇 and 𝑄 are discrete. For this case, the per-

formance measure defines a weighted sum over all the values of

𝑃 (𝑡, 𝑞) within the bounded region of𝑤 . As such, when comparing

two performance profiles with this measure we not only consider

how often the value of 𝑃 (𝑡, 𝑞) is better for one profile than for the

other, but also how much better, or worse, the value is at each point.

In the following, we show that the measure for discrete domains 𝑇

and 𝑄 is order preserving with respect to the ≥𝑤 pre-order.

Proposition 3.2. Given the performance measure

𝑀𝑤 (𝑃) =
∑
𝑡 ∈𝑇

∑
𝑞∈𝑄

ℎ𝑤,𝑃 (𝑡, 𝑞)

it holds that𝑀𝑤 is order preserving, formally

𝑃 ≥𝑤 𝑃 ′ =⇒ 𝑀𝑤 (𝑃) ≥ 𝑀𝑤 (𝑃 ′)

Proof. If 𝑃 ≥𝑤 𝑃 ′, then, from Definition 3.1, it holds that

𝑤 (𝑡, 𝑞) > 0 =⇒ ℎ𝑤,𝑃 (𝑡, 𝑞) ≥ ℎ𝑤,𝑃 ′ (𝑡, 𝑞)
𝑤 (𝑡, 𝑞) = 0 =⇒ ℎ𝑤,𝑃 (𝑡, 𝑞) = ℎ𝑤,𝑃 ′ (𝑡, 𝑞)

Therefore, ℎ𝑤,𝑃 (𝑡, 𝑞) ≥ ℎ𝑤,𝑃 ′ (𝑡, 𝑞) for all 𝑡 ∈ 𝑇 and 𝑞 ∈ 𝑄 , which
implies that𝑀𝑤,𝑃 ≥ 𝑀𝑤,𝑃 ′ . □

Similarly, it can be shown that𝑀𝑤 is strictly order preserving

𝑃 >𝑤 𝑃 ′ =⇒ 𝑀𝑤 (𝑃) > 𝑀𝑤 (𝑃 ′)
𝑃 =𝑤 𝑃 ′ =⇒ 𝑀𝑤 (𝑃) = 𝑀𝑤 (𝑃 ′)

We also show that the same measure can provide different values

for incomparable algorithms.

Proposition 3.3. Given the performance measure

𝑀𝑤 (𝑃) =
∑
𝑡 ∈𝑇

∑
𝑞∈𝑄

ℎ𝑤,𝑃 (𝑡, 𝑞)

and two performance profiles 𝑃 and 𝑃 ′, then it holds that

𝑃 ∥𝑤 𝑃 ′ ≠⇒ 𝑀𝑤 (𝑃) = 𝑀𝑤 (𝑃 ′)

GECCO ’20, July 8–12, 2020, Cancún, Mexico Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete

Table 1: Performance measures for the combinations of discrete and continuous domains for time and quality, as well as
bounds 𝑡ℓ , 𝑡𝑢 , 𝑞ℓ , 𝑞𝑢 for utility function𝑤 . Themeasures are definedwith respect to a helper functionℎ𝑤,𝑃 defined in Equation 2.

Continuous T, Continuous Q Continuous T, Discrete Q Discrete T, Continuous Q Discrete T, Discrete Q

(𝑡ℓ < 𝑡𝑢) ∧ (𝑞ℓ < 𝑞𝑢)
∫
𝑄

∫
𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞) 𝑑𝑡 𝑑𝑞
∑
𝑞∈𝑄

∫
𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞) 𝑑𝑡
∑
𝑡 ∈𝑇

∫
𝑄

ℎ𝑤,𝑃 (𝑡, 𝑞) 𝑑𝑞
∑
𝑡 ∈𝑇

∑
𝑞∈𝑄

ℎ𝑤,𝑃 (𝑡, 𝑞)

(𝑡ℓ = 𝑡𝑢) ∧ (𝑞ℓ < 𝑞𝑢)
∫
𝑄

ℎ𝑤,𝑃 (𝑡ℓ , 𝑞) 𝑑𝑞
∑
𝑞∈𝑄

ℎ𝑤,𝑃 (𝑡ℓ , 𝑞)
∫
𝑄

ℎ𝑤,𝑃 (𝑡ℓ , 𝑞) 𝑑𝑞
∑
𝑞∈𝑄

ℎ𝑤,𝑃 (𝑡ℓ , 𝑞)

(𝑡ℓ < 𝑡𝑢) ∧ (𝑞ℓ = 𝑞𝑢)
∫
𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞ℓ) 𝑑𝑡
∫
𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞ℓ) 𝑑𝑡
∑
𝑡 ∈𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞ℓ)
∑
𝑡 ∈𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞ℓ)

(𝑡ℓ = 𝑡𝑢) ∧ (𝑞ℓ = 𝑞𝑢) ℎ𝑤,𝑃 (𝑡ℓ , 𝑞ℓ) ℎ𝑤,𝑃 (𝑡ℓ , 𝑞ℓ) ℎ𝑤,𝑃 (𝑡ℓ , 𝑞ℓ) ℎ𝑤,𝑃 (𝑡ℓ , 𝑞ℓ)

Proof. Let 𝑇 = {0, 1}, 𝑄 = {0}, and 𝑤 (𝑡, 𝑞) = 1 for all 𝑡 ∈ 𝑇
and 𝑞 ∈ 𝑄 . Then, consider values 𝑃 (0, 0) = 3, 𝑃 (1, 0) = 3 for a

performance profile 𝑃 , and 𝑃 ′(0, 0) = 1, 𝑃 ′(1, 0) = 4 for a per-

formance profile 𝑃 ′. For these values it holds that 𝑃 ∥𝑤 𝑃 ′ and
𝑀𝑤 (𝑃) ≠ 𝑀𝑤 (𝑃 ′). □

The propositions above similarly generalize for the remaining

performance measures in Table 1.

4 ALGORITHM SELECTION
The algorithm selection problem [18] concerns the selection of an

algorithm to solve an instance, such that a performance measure,

set by the decision maker, is optimized. We recall, from Section 1,

two relevant aspects to consider for the selection with respect to

anytime algorithms are: (i) to define a performance measure for

anytime algorithms that takes the anytime preferences of the deci-

sion maker into account; and (ii) to include the anytime preferences

of the decision maker into the selection problem at the time of selec-

tion. In the previous section we focused on the first issue. For this

section, we turn into the second. First, we formalize the algorithm

selection problem in the context of anytime algorithms. Then, we

discuss possible approaches to develop a selection methodology

that considers the anytime preferences at the time of selection.

4.1 Algorithm Selection Problem for Anytime
Algorithms

In this work we formally describe a selection methodology by a

mapping 𝑆 (𝜋,𝑤) → 𝐴, that for a given instance 𝜋 and utility

function 𝑤 returns an algorithm 𝑎 ∈ 𝐴. We remark that utility

function 𝑤 can change between calls to the selection task. The

performance of a selection mapping is considered with respect to

the performance of the selected algorithm 𝑎 on the same instance

and utility function. Thus, an “optimal” selection methodology can

be defined as follows

𝑆∗ (𝜋,𝑤) = argmax

𝑎∈𝐴
𝑀𝑤 (𝑃𝑎,𝜋)

where 𝑃𝑎,𝜋 denotes the performance profile of algorithm 𝑎 ∈ 𝐴
on instance 𝜋 , and 𝑀𝑤 (𝑃𝑎,𝜋) is the performance measure of that

profile with respect to the utility function𝑤 .

Devising an optimal selection methodology is often infeasible

since there is usually no algorithm that, for all instances and util-

ity functions, will always show the best performance. Moreover,

precisely characterizing the behavior of the algorithms is often

impossible since many factors can affect their performance. As

such, we are interested in designing methodologies that can solve

the algorithm selection problem approximately, and that will often

return an algorithm with optimal, or close to optimal, performance.

4.2 Algorithm Selection Approaches
Different approximate selection methodologies can be found in the

literature [10, 11]. However, up to our knowledge, none consider the

dynamic anytime preferences of the decision maker. Nevertheless,

the methodologies found in the literature can generally be divided

into two categories: (i) regression approaches, which predict the

(scalar) performance measure of the algorithms for an instance and

then use these predictions to make the selection, e.g. [12, 20]; and

(ii) classification approaches, which return the selected algorithm

without predicting the performance of the algorithms, e.g. [17, 19].

In this section, we consider how the dynamic anytime preferences

impact the feasibility of similar methodologies. Note that selection

approaches often rely on instance features to guide the selection,

which are features computed from the instance that will expectedly

impact the performance of the algorithms, e.g. the number of de-

cision variables for optimization problems. The study of instance

features is, in itself, a challenging task which is still subject to active

research for various optimization problems [3, 10].

The introduction of dynamic anytime preferences into the se-

lection problem introduces some challenges for the design of a

selection methodology. Assume a scenario with static anytime pref-

erences, i.e. the preferences do not change between calls to the

selection methodology. A reasonable regression approach is to

learn to predict the performance measure for the algorithms from

a set of training instances, based on instance features. To consider

dynamic anytime preferences in a similar approach, we could intro-

duce features related to the utility function𝑤 , e.g. the values of the

bounds 𝑡ℓ , 𝑡𝑢 , 𝑞ℓ , 𝑞𝑢 , and features related to the output values of the

utility function. However, this introduces several issues. First, the

use of more features typically increases the complexity of machine

learning techniques. Second, it may lead to a significant increase in

the number of training examples needed as we have to consider a

diverse set of utility functions. Assuming𝑛 training instances and𝑚

training utility functions, there are 𝑛 ·𝑚 possible training examples

to consider. Last, creating a diverse set of𝑚 training utility func-

tions is likely not trivial, since there is likely a very large, possibly

Algorithm Selection of Anytime Algorithms GECCO ’20, July 8–12, 2020, Cancún, Mexico

infinite, number of utility functions that the decision maker can

give to the selection methodology.

A classification system can potentially limit the number of utility

functions needed to learn the system, since it does not need to pre-

dict the performance of the algorithms. For example, consider the

comparison of two algorithms: an heuristic that quickly achieves a

good solution but stops on a local optimum, versus an exact algo-

rithm that slowly starts with worse solutions but eventually reaches

the global optimum. Then, for each instance, consider a time point

𝑡 for which the exact algorithm is always better than the heuristic.

If the classification system can learn to predict point 𝑡 , then it no

longer needs to be trained for utility functions where 𝑡 < 𝑡ℓ since it

knows that the exact algorithm can always be selected in that case.

Similar ideas for the other bounds can further help to reduce the

number of utility functions needed to train the classification system.

However, the number of remaining utility functions after these cuts

may still be unfeasible. Moreover, these cuts are not always easy to

identify, e.g. when considering many different algorithms.

To avoid the need of any utility function during the training

phase, we consider a third approach. In particular, given an in-

stance 𝜋 and a utility function𝑤 , the selection methodology learns

to predict a performance profile for each algorithm with respect

to instance 𝜋 . Then, at the time of selection, the methodology pre-

dicts the performance profile for each algorithm, and calculates

the performance measure with respect to the utility function𝑤 for

each predicted performance profile. Finally, it selects the algorithm

whose performance profile has the best performance measure.

In Section 5.3, we present a methodology based on this approach

that uses the instance features of instance 𝜋 in order to identify

similar instances in the training set. Then, the available perfor-

mance traces for the identified instances are used to predict the

performance profile for each algorithm with respect to instance 𝜋 .

5 EXPERIMENTAL STUDY
In this section we present an experimental study on the selection

between an exact and a heuristic algorithm for a bi-objective knap-

sack problem. The purpose of this preliminary study is to formalize,

and study, a concrete selection methodology based on the last ap-

proach discussed in Section 4.2.We start by introducing the problem,

instances, and the two algorithms considered. Afterwards, we for-

malize the selection methodology, and report the results of this

methodology on various selection scenarios.

5.1 Benchmark Problem
We consider the bi-objective binary knapsack problem (BOBKP),

defined by

max (𝑓1 (𝑥), 𝑓2 (𝑥)) =
©«

𝑛∑
𝑗=1

𝑥 𝑗𝑣
1

𝑗 ,

𝑛∑
𝑗=1

𝑥 𝑗𝑣
2

𝑗

ª®¬ (3)

s.t.

𝑛∑
𝑗=1

𝑥 𝑗𝑐 𝑗 ≤ 𝐶 (4)

𝑥 ∈ {0, 1}𝑛 (5)

where 𝑛 is the number of items, 𝑣1
𝑗
, 𝑣2

𝑗
, 𝑐 𝑗 ∈ Z+ denote the values

and cost associated with an item 𝑗 = 1, . . . , 𝑛, respectively, 𝐶 ∈ Z+

denotes a cost constraint, and 𝑥 is the decision vector that describes

which items are selected or not, in particular 𝑥 𝑗 = 1 denotes that

the 𝑗th item is selected and 𝑥 𝑗 = 0 otherwise.

The instances considered for this study follow the generation

procedure described in [1], which considers a cost constraint

𝐶 =
1

2

𝑛∑
𝑗=1

𝑐 𝑗

and four instance types:

• Type A (Random instances): values 𝑣1
𝑗
and 𝑣2

𝑗
, and costs 𝑐 𝑗 are

randomly generated with respect to the uniform distribution

in the range [1, 1000];
• Type B (Unconflicting instances): values 𝑣1

𝑗
are randomly

generated with respect to the uniform distribution in the

range [111, 1000], values 𝑣2
𝑗
in the range [𝑣1

𝑗
− 100, 𝑣1

𝑗
+ 100],

and the costs 𝑐 𝑗 in the range [1, 1000];
• Type C (Conflicting instances): values 𝑣1

𝑗
are randomly gen-

erated with respect to the uniform distribution in the range

[1, 1000], values 𝑣2
𝑗
in the range [max{900−𝑣1

𝑗
, 1},min{1100−

𝑣1
𝑗
, 1000}], and the costs 𝑐 𝑗 in the range [1, 1000];

• Type D (Conflicting instances with correlated weight): same

as Type C, except that the costs 𝑐 𝑗 are randomly generated

in the range [𝑣1
𝑗
+ 𝑣2

𝑗
− 200, 𝑣1

𝑗
+ 𝑣2

𝑗
+ 200].

A solution to a bi-objective problem consists of a set of mutu-

ally non-dominated decision vectors. Under the notion of Pareto

optimality [6] this means that no decision vector in the solution set

is better or equal than another in all objective values. The optimal

solution, namely the Pareto set, is the set of all feasible decision

vectors that are not dominated by any other feasible decision vector.

To measure the quality of a solution set as a scalar value, different

quality indicators have been proposed [23]. We note that the choice

of a quality indicator is up to the decision maker, and that the se-

lection methodology proposed in Section 5.3 does not depend on

any specific indicator. However, it assumes that the values returned

by the chosen indicator follow a total order. Still, the choice of

an indicator should be carefully considered since it impacts the

anytime data collected, which in turn influences which algorithm

should be selected. In this work, we consider the hypervolume in-

dicator [22] which corresponds to the area dominated by the image

of a solution in the objective space with respect to a reference point.

We consider a reference point (−1,−1) so that any solution to the

BOBKP has a non-zero quality value. The hypervolume was, in

part, chosen due to being monotonic with respect to the notion of

Pareto optimality [23]. As such, a better solution, according to the

notion of Pareto dominance, will have a greater hypervolume value.

Moreover, the hypervolume value is maximal for the Pareto set.

5.2 Algorithms
In this study we consider two algorithms: an exact algorithm, and

a heuristic algorithm. This should provide a natural scenario for

algorithm selection in an anytime context since we expect the

heuristic algorithm to quickly find good solutions but to naturally

stop before finding the Pareto set, whereas we expect the exact

algorithm to initially find solutions with worst quality than those

found by the heuristic, but to eventually surpass the heuristic and

GECCO ’20, July 8–12, 2020, Cancún, Mexico Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete

find the Pareto set. We note that these assumptions may not always

hold, e.g. the exact approach may take too long to be useful or a

heuristic may not naturally stop. Nonetheless, they hold for the

algorithms we consider in this study. In particular, we consider the

“B-DP1” dynamic programming (DP) algorithm described in [7],

and a Pareto local search (PLS) approach [16].

The DP approach is described in Algorithm 1. The methods

ComputeNSDE and ComputeFromPrevious follow the procedures

described in [1] and [7] as appropriate for variant “B-DP1”. If in-

terrupted the algorithm returns the non-dominated vectors from

the latest set 𝑋𝑖 that was computed. As such, to gather the anytime

performance data required for the experimental study we measure

the hypervolume of 𝑋𝑖 at the end of each iteration.

Algorithm 1: Dynamic Programming

1 // Initialize 𝐶0 with empty solution

2 𝑋0 ← {(0, . . . , 0)}
3 𝐹 ← ComputeNSDE()

4 for 𝑖 ∈ {1, 2, . . . , 𝑛} do
5 𝑋𝑖 ← ComputeFromPrevious(𝑋𝑖−1, 𝐹)

6 return 𝑋𝑛

The PLS approach is described in Algorithm 2. The sets 𝑋𝑢 and

𝑋𝑎 , which correspond to the set of all unexplored non-dominated

decision vectors and the set of all non-dominated decision vectors

respectively, are implemented using a self-balancing binary tree

data structure where the decision vectors are sorted according to

the value of the first objective function 𝑓1. For the Selectmethod we

consider a procedure that alternates between selecting the first and

last decision vector in the unexplored set. We chose this procedure

since it generally showed, in our preliminary tests, a better anytime

behavior when compared to both a method that randomly selects a

decision vector from the unexplored set, and a method that selects

the decision vector with the maximal optimistic hypervolume im-

provement (OHI) heuristic described in [5]. The OHI corresponds

to the “gap”, in terms of hypervolume, around a decision vector in

the objective space. Thus, a larger OHI value suggests a potentially

greater increase in hypervolume by neighboring decision vectors.

The neighborhood of a decision vector 𝑠 is comprised of all feasible

decision vectors within a hamming distance of 1 of the current

decision vector (Neighborhood1), and all feasible decision vectors

that result from the exchange of two values in the current decision

vector (Neighborhood2). The neighborhood exploration follows

the 1-flip-exchange method described in [13]. First, the algorithm

explores the decision vectors of Neighborhood1. Then, if no new

non-dominated decision vector was found during the exploration

of Neighborhood1, the algorithm explores the decision vectors of

Neighborhood2. The set of initial non-dominated decision vectors

is comprised of the empty decision vector where 𝑥𝑖 = 0 for all

𝑖 = 1, 2, . . . , 𝑛. It is worth noting that, for this neighborhood ex-

ploration definition, the PLS approach may not find the complete

Pareto set, since it can fall into a Pareto local optimum set [16]. If

interrupted the algorithm returns the set 𝑋𝑎 . Thus, to measure its

anytime performance we update the hypervolume of the set 𝑋𝑎 in

an online fashion whenever we remove or insert decision vectors.

Algorithm 2: Pareto Local Search

Input: 𝑋0 (Set of initial non-dominated decision vectors)

1 𝑋𝑢 ← 𝑋0

2 𝑋𝑎 ← 𝑋0

3 while 𝑋𝑢 ≠ ∅ do
4 𝑥 ← Select(𝑋𝑢)
5 𝑋𝑢 ← 𝑋𝑢 \ {𝑥}
6 aux← 0

7 for 𝑥 ′ ∈ Neighborhood1(𝑥) ∪ Neighborhood2(𝑥) do
8 if 𝑥 ′ ∈ Neighborhood2(𝑥) ∧ aux = 1 then
9 break

10 if IsDominated(𝑥 ′, 𝑋𝑎) then
11 continue

12 𝑋𝑢 ← RemoveDominated(𝑋𝑢 , 𝑥 ′)
13 𝑋𝑎 ← RemoveDominated(𝑋𝑎, 𝑥 ′)
14 𝑋𝑢 ← 𝑋𝑢 ∪ {𝑥 ′}
15 𝑋𝑎 ← 𝑋𝑎 ∪ {𝑥 ′}
16 if 𝑥 ′ ∈ Neighborhood1(𝑥) then
17 aux← 1

18 return 𝑋𝑎

5.3 Selection Methodology
In the following, we present a selectionmethodology for the BOBKP

based on the last approach proposed in Section 4. We recall that

this approach consists of predicting the performance profile of a

new instance for each algorithm, applying a performance measure

to each predicted profile, and then selecting the algorithm whose

profile presents the best performance measure value.

To predict the performance profile we take into account the

performance traces of each algorithm on a set of training instances 𝐼 .

For an instance 𝑖 ∈ 𝐼 we compute the following instance features:

• 𝜆𝑖
1
: the problem size, i.e. 𝑛 in Equation 3;

• 𝜆𝑖
2
: the rank correlation coefficient between vectors 𝑣1 and 𝑣2;

• 𝜆𝑖
3
: the rank correlation coefficient between vectors 𝑣1 and 𝑐 ;

• 𝜆𝑖
4
: the rank correlation coefficient between vectors 𝑣2 and 𝑐 .

To select the algorithm for an (unseen) instance 𝜋 , we start by

extracting the instance features 𝜆𝜋 . Then, to choose which train-

ing instances are used to build the predicted performance profile

we consider the following procedure. First, we select the training

instances that have the closest problem size to instance 𝜋 , formally

𝐼𝑠 = argmin

𝑖∈𝐼

��𝜆𝑖
1
− 𝜆𝜋

1

��
where 𝑖 ∈ 𝐼 denotes an instance in the training set. Then, we

compute the sum of the absolute differences between correlation

coefficients, formally

𝑠𝑖 =
��𝜆𝑖
2
− 𝜆𝜋

2

�� + ��𝜆𝑖
3
− 𝜆𝜋

3

�� + ��𝜆𝑖
4
− 𝜆𝜋

4

��
for every training instance 𝑖 ∈ 𝐼𝑠 , and collect the𝑚 instances with

smaller 𝑠𝑖 into a set 𝐼𝜋 .

From set 𝐼𝜋 , which contains the training instances chosen for

predicting the performance profile of instance 𝜋 , we build a perfor-

mance profile 𝑃𝑎,𝐼𝜋 with the available runs on those instances for

Algorithm Selection of Anytime Algorithms GECCO ’20, July 8–12, 2020, Cancún, Mexico

each algorithm 𝑎 ∈ 𝐴. Then, the selection is done by applying the

performance measure to the performance profile for each algorithm,

and selecting the algorithm with the best performance, formally

𝑆 (𝜋,𝑤) = argmax

𝑎∈𝐴
𝑀𝑤

(
𝑃𝑎,𝐼𝜋

)
(6)

where𝑀𝑤 denotes a performance measure with respect to a utility

function𝑤 describing the decision maker’s anytime preferences.

5.4 Experimental Scenario and Results
In this section we present the experimental scenario and the results

of our proposed methodology with respect to the quality of the

predicted performance measure and quality of the selection.

5.4.1 Experimental Scenario. For our experimental scenario we

consider the four instance types discussed in Section 5.1 for the

BOBKP, with problem sizes 𝑛 ∈ {50, 60, . . . , 140, 150} for the train-
ing instances, and sizes 𝑛 ∈ {50, 55, . . . , 145, 150} for the testing

instances. For each combination of instance type and problem size,

30 random instances were generated for training and 10 for testing.

We record the performance traces in terms of CPU time, in seconds,

and relative hypervolume, which corresponds to the ratio between

the current hypervolume and the maximal hypervolume. The max-

imal hypervolume corresponds to the hypervolume of the image

of the Pareto set in the objective space, which is found by letting

the DP algorithm finish its execution. For each instance, we record

three runs of each algorithm to account for small fluctuations in

CPU-time. Only three runs were considered since the algorithms

are deterministic and the fluctuations are generally very small.

The DP and PLS algorithms shown in Section 5.2 were imple-

mented in C++ and the experiments were carried out on a computer

with an Intel i7-8700 CPU with clock frequency 3.20 GHz. Calculat-

ing the hypervolume throughout the execution of the algorithms

introduces some overhead. In particular, for the instances consid-

ered in the experimental study, we saw an impact of less than 1% on

the performance of the DP algorithm, and less than 5% for the PLS

algorithm, which we consider to be within an acceptable margin.

For utility function𝑤 we consider the following definition

𝑤 (𝑡, 𝑞) =
{
1 if (𝑡ℓ ≤ 𝑡 ≤ 𝑡𝑢) ∧ (𝑞ℓ ≤ 𝑞 ≤ 𝑞𝑢)
0 otherwise

The experiments are conducted with fixed values of 𝑡ℓ = 0, 𝑞ℓ = 0,

𝑞𝑢 = 1, and varying values of 𝑡𝑢 ∈ [10−5, 106] in order to study the

methodology over varying anytime preferences. Note that solution

quality is defined in the interval [0, 1] since we consider a relative
measure. As such, this definition of 𝑤 indicates that the decision

maker is equally likely to interrupt the algorithm for any time

𝑡ℓ ≤ 𝑡 ≤ 𝑡𝑢 and for all possible quality values. For 𝑡𝑢 we sample 200

points evenly spaced on a log scale of the interval [10−5, 106]. Lastly,
we consider the choice of the𝑚-value for the presented selection

methodology, which controls the number of training instances used

to predict the performance profile of the selection instance. Our

preliminary experiments suggest that 5 ≤ 𝑚 ≤ 10 provides the best

results in terms of selection accuracy and quality of the predicted

performance profile. As such, we arbitrarily consider𝑚 = 7 within

that range for the experiments shown in this study.

To recap, for testing there are 21 different instance sizes, and

4 instance types. Then, for each combination of instance size and

type, 10 instances are considered for testing. This results in a total

of 21 × 4 × 10 = 840 testing instances. Finally, for each instance we

consider 200 possible anytime preferences by varying 𝑡𝑢 . As such,

there are a total of 840 × 200 = 168 000 selection scenarios.

5.4.2 Prediction Quality. We discuss the prediction quality of

our methodology with respect to a relative performance measure
that denotes the ratio between the performance measure of a perfor-

mance profile 𝑃 and an “optimal” performance profile 𝑃∗, formally

𝑀𝑤 (𝑃)
𝑀𝑤 (𝑃∗)

where the “optimal” performance profile is defined by 𝑃∗ (𝑡, 𝑞) = 1

for every 𝑡 ∈ 𝑇 and 𝑞 ∈ 𝑄 . Note that, given the selection scenarios

described in the previous section and the domains of quality and

time, the performance measure is, from Table 1, given by

𝑀𝑤 (𝑃) =
∫
𝑄

∫
𝑇

ℎ𝑤,𝑃 (𝑡, 𝑞) 𝑑𝑡 𝑑𝑞

Figure 2 shows the relative performance measure for the per-

formance profile predicted by our proposed methodology, versus

the “real” performance profile of the algorithm for a given instance.

The results are reported for testing instances with problem size

𝑛 = 115, a size that is not in the set of training instances. For a

better visualization, we arbitrarily chose a single instance for each

type. The figure suggests that the value of the relative performance

measure for the predicted performance profile is often close to the

same value for the real performance profile. However, we can ob-

serve a significant error for the PLS algorithm on instance type

𝐵. In Figure 3 we report the frequency of the error between the

relative performance measure of the real and predicted profiles,

over all selection scenarios. The plots shows that, although the

error is very close to zero for most scenarios, there are still scenar-

ios with a significant error. As such, we consider that there is still

room to improve the predicted performance profile, for example by

considering more instance features.

5.4.3 Selection Quality. We report in Table 2 the proportion of

selection scenarios with an error in the specified intervals. The error

is reported with respect to the difference in relative performance

measure between the real performance profiles of the selected and

optimal algorithms. An error with value zero (third column) indi-

cates a correct selection and the proportion represents the accuracy

of the methodology. Thus, a greater proportion is better. An error

greater than zero (columns 4 to 6) indicates a wrong selection, thus

a smaller proportion is better. The best proportions for each type

and error interval are highlighted in bold. We report the results for:

(i) our proposed methodology (Section 5.3); (ii) a random method-

ology that selects at random between the DP and PLS algorithms;

(iii) a methodology that always selects the DP algorithm; and (iv) a

methodology that always selects the PLS algorithm.

The results show that the accuracy of our proposed selection

methodology is greater than 96% for the considered scenarios, and

that it is always better than the remaining methodologies. The

proportion of scenarios with an error within each specified interval

is also lower for our proposed methodology. However, there are

scenarios for instances of type B where our methodology shows an

error greater than 10%, which we consider to be significant.

GECCO ’20, July 8–12, 2020, Cancún, Mexico Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete

Type: C Type: D

Type: A Type: B

1e-03 1e+00 1e+03 1e+06 1e-03 1e+00 1e+03 1e+06

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time Upper Bound (s)

R
e
la

tiv
e
 P

e
rf

o
rm

a
n
c
e
 M

e
a
su

re

Algorithm DP PLS Measurement Type Real Predicted

Figure 2: Relative performance measure for the “real” per-
formance profiles (continuous lines) of testing instances of
size 𝑛 = 115, and for the performance profile (discontinuous
lines) predicted by our selection methodology.

Type: C Type: D

Type: A Type: B

-0.1 0.0 0.1 -0.1 0.0 0.1 0.2

-0.10 -0.05 0.00 0.05 0.10 0.15 -0.1 0.0 0.1 0.2 0.3

10

100

1000

10

100

1000

Relative Performance Measure Error

N
u
m

b
e
r

o
f
o
c
c
u
re

n
c
e
s

Algorithm DP PLS

Figure 3: Absolute error between the relative performance
measure of the predicted and real performance profiles.

6 CONCLUSION
In this work we discussed several aspects related to the algorithm se-

lection problem for anytime algorithms. In particular, we presented

performance measures that take into account the anytime prefer-

ences of the decision maker, and discussed possible approaches

to develop a selection methodology which considers the decision

Table 2: Proportion of selection scenarios with an error be-
tween the selected and optimal algorithms, in the presented
intervals. Note that, an error of 0 (third column) indicates a
correct selection. The best values are highlighted in bold.

Type Methodology [0] (0, 0.01] (0.01, 0.1] (0.1, 1]

A

Proposed 0.969 0.030 0.001 0.000
Random 0.498 0.290 0.076 0.136

DP 0.479 0.122 0.126 0.272

PLS 0.521 0.452 0.027 0.000

B

Proposed 0.969 0.009 0.019 0.003
Random 0.501 0.028 0.368 0.104

DP 0.814 0.043 0.076 0.067

PLS 0.186 0.012 0.663 0.139

C

Proposed 0.971 0.023 0.006 0.000
Random 0.502 0.154 0.193 0.150

DP 0.453 0.141 0.105 0.300

PLS 0.547 0.169 0.283 0.000

D

Proposed 0.989 0.008 0.004 0.000
Random 0.503 0.067 0.222 0.208

DP 0.378 0.121 0.085 0.416

PLS 0.622 0.014 0.364 0.000

maker’s dynamic anytime preferences. Then, we carried out a pre-

liminary study for the selection between an exact and a heuristic

algorithm on a bi-objective knapsack problem, using a selection

methodology developed following one of the discussed approaches.

The results of this preliminary study show that our selection

methodology has an accuracy greater than 96% on the selected

scenarios. However, we highlighted some scenarios where the error

between the performance measure of the predicted and optimal

algorithms was significant. We expect that this error can be reduced

by having a better prediction of the performance profile for the

selection instance. As such, a possible direction for future work is

to extend this preliminary study by considering, for example, more

instance features and different methods to select which training

instances are used to predict the performance profile. Moreover, to

better understand this selection methodology, different selection

scenarios could be considered, e.g. scenarios with different utility

functions and more algorithms. Lastly, another direction for future

work is to study and apply algorithm selection methodologies of

anytime algorithms on real-world scenarios.

ACKNOWLEDGMENTS
This work was partially supported by PICS project MOCO-SEARCH

co-funded by the French National Center for Scientific Research

(CNRS) and the Portuguese Foundation for Science and Technology

(FCT). The first author acknowledges the FCT for Ph.D. studentship

SFRH/BD/132275/2017 co-funded by the European Social Fund and

by the State Budget of the Portuguese Ministry of Education and Sci-

ence. This work was partially funded by national funds through the

FCT within the scope of the project CISUC - UID/CEC/00326/2020

and by European Social Fund, through the Regional Operational

Program Centro 2020.

Algorithm Selection of Anytime Algorithms GECCO ’20, July 8–12, 2020, Cancún, Mexico

REFERENCES
[1] Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten. 2009. Solving ef-

ficiently the 0-1 multi-objective knapsack problem. Computers & Operations
Research 36, 1 (Jan. 2009), 260–279. https://doi.org/10.1016/j.cor.2007.09.009

[2] Marco Chiarandini. 2005. Stochastic Local Search Methods for Highly Constrained
Combinatorial Optimisation Problems. Ph.D. Dissertation. Technical University
of Darmstadt, Darmstadt, Germany.

[3] Fabio Daolio, Arnaud Liefooghe, Sébastien Verel, Hernán Aguirre, and Kiyoshi

Tanaka. 2017. Problem Features versus Algorithm Performance on Rugged

Multiobjective Combinatorial Fitness Landscapes. Evolutionary Computation 25,

4 (Winter 2017), 555–585. https://doi.org/10.1162/evco_a_00193

[4] Thomas L. Dean and Mark S. Boddy. 1988. An Analysis of Time-Dependent

Planning. In Proceedings of the Seventh AAAI National Conference on Artificial
Intelligence (AAAI’88). AAAI Press, 49–54.

[5] Jérémie Dubois-Lacoste, Manuel López-Ibáñez, and Thomas Stützle. 2015. Any-

time Pareto local search. European Journal of Operational Research 243, 2 (June

2015), 369–385. https://doi.org/10.1016/j.ejor.2014.10.062

[6] Matthias Ehrgott. 2005. Multicriteria Optimization (2nd ed.). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-27659-9

[7] José Rui Figueira, Luís Paquete, Marco Simões, and Daniel Vanderpooten. 2013.

Algorithmic improvements on dynamic programming for the bi-objective {0,1}

knapsack problem. Computational Optimization and Applications 56, 1 (Sept.

2013), 97–111. https://doi.org/10.1007/s10589-013-9551-x

[8] Viviane Grunert da Fonseca, Carlos M. Fonseca, and Andreia O. Hall. 2001.

Inferential Performance Assessment of Stochastic Optimisers and the Attainment

Function. In Evolutionary Multi-Criterion Optimization (EMO 2001). Springer,
Berlin, Heidelberg, 213–225. https://doi.org/10.1007/3-540-44719-9_15

[9] Holger H. Hoos and Thomas Stützle. 2005. Stochastic Local Search: Foundations
& Applications. Morgan Kaufmann, San Francisco, CA. https://doi.org/10.1016/

B978-1-55860-872-6.X5016-1

[10] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019.

Automated Algorithm Selection: Survey and Perspectives. Evolutionary Compu-
tation 27, 1 (Spring 2019), 3–45. https://doi.org/10.1162/evco_a_00242

[11] Lars Kotthoff. 2016. Algorithm Selection for Combinatorial Search Problems: A

Survey. In Data Mining and Constraint Programming. Springer, Cham, 149–190.

https://doi.org/10.1007/978-3-319-50137-6_7

[12] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and

Yoav Shoham. 2003. A Portfolio Approach to Algorithm Selection. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03).
1542–1543.

[13] Arnaud Liefooghe, Luís Paquete, Marco Simões, and José R. Figueira. 2011. Con-

nectedness and Local Search for Bicriteria Knapsack Problems. In Evolutionary
Computation in Combinatorial Optimization (EvoCOP 2011). Springer, Berlin,
Heidelberg, 48–59. https://doi.org/10.1007/978-3-642-20364-0_5

[14] Manuel López-Ibáñez, Luís Paquete, and Thomas Stützle. 2010. Exploratory

Analysis of Stochastic Local Search Algorithms in Biobjective Optimization.

In Experimental Methods for the Analysis of Optimization Algorithms. Springer,
Berlin, Heidelberg, 209–222. https://doi.org/10.1007/978-3-642-02538-9_9

[15] Manuel López-Ibáñez and Thomas Stützle. 2014. Automatically improving the

anytime behaviour of optimisation algorithms. European Journal of Operational
Research 235, 3 (June 2014), 569–582. https://doi.org/10.1016/j.ejor.2013.10.043

[16] Luis Paquete, Tommaso Schiavinotto, and Thomas Stützle. 2007. On local optima

in multiobjective combinatorial optimization problems. Annals of Operations
Research 156 (Aug. 2007), 83–97. https://doi.org/10.1007/s10479-007-0230-0

[17] Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew

Michalewicz, and Frank Neumann. 2014. A comprehensive benchmark set and

heuristics for the traveling thief problem. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation (GECCO ’14). Association
for Computing Machinery, New York, NY, USA, 477–484. https://doi.org/10.1145/

2576768.2598249

[18] John R. Rice. 1976. The Algorithm Selection Problem. In Advances in Computers.
Vol. 15. Elsevier, 65–118. https://doi.org/10.1016/S0065-2458(08)60520-3

[19] Matheus Guedes Vilas Boas, Haroldo Gambini Santos, Luiz Henrique de Campos

Merschmann, and Greet Vanden Berghe. 2019. Optimal decision trees for the

algorithm selection problem: integer programming based approaches. Interna-
tional Transactions in Operational Research (Sept. 2019). https://doi.org/10.1111/

itor.12724

[20] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2008. SATzilla:

Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence
Research 32 (June 2008), 565–606. https://doi.org/10.1613/jair.2490

[21] Shlomo Zilberstein. 1996. Using Anytime Algorithms in Intelligent Systems. AI
Magazine 17, 3 (Fall 1996), 73–83. https://doi.org/10.1609/aimag.v17i3.1232

[22] Eckart Zitzler. 1998. Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. Ph.D. Dissertation. Swiss Federal Institute of Technol-
ogy Zurich.

[23] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane

Grunert da Fonseca. 2003. Performance Assessment of Multiobjective Optimizers:

An Analysis and Review. IEEE Transactions on Evolutionary Computation 7, 2

(April 2003), 117–132. https://doi.org/10.1109/TEVC.2003.810758

https://doi.org/10.1016/j.cor.2007.09.009
https://doi.org/10.1162/evco_a_00193
https://doi.org/10.1016/j.ejor.2014.10.062
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/s10589-013-9551-x
https://doi.org/10.1007/3-540-44719-9_15
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-642-20364-0_5
https://doi.org/10.1007/978-3-642-02538-9_9
https://doi.org/10.1016/j.ejor.2013.10.043
https://doi.org/10.1007/s10479-007-0230-0
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1111/itor.12724
https://doi.org/10.1111/itor.12724
https://doi.org/10.1613/jair.2490
https://doi.org/10.1609/aimag.v17i3.1232
https://doi.org/10.1109/TEVC.2003.810758

	Abstract
	1 Introduction
	2 Anytime Algorithms
	3 Measuring the performance of an anytime algorithm
	3.1 Logical Relations
	3.2 Performance Measures

	4 Algorithm Selection
	4.1 Algorithm Selection Problem for Anytime Algorithms
	4.2 Algorithm Selection Approaches

	5 Experimental Study
	5.1 Benchmark Problem
	5.2 Algorithms
	5.3 Selection Methodology
	5.4 Experimental Scenario and Results

	6 Conclusion
	Acknowledgments
	References

