
A Software Library for Archiving Nondominated Points
Duarte M. Dias

CISUC, University of Coimbra
Coimbra, Portugal

duartedias@student.dei.uc.pt

Alexandre D. Jesus
CISUC, University of Coimbra

Coimbra, Portugal
ajesus@dei.uc.pt

Luís Paquete
CISUC, University of Coimbra

Coimbra, Portugal
paquete@dei.uc.pt

ABSTRACT
The need to efficiently maintain nondominated points in an un-
bounded archive arises in many exact and heuristic approaches to
multiobjective combinatorial optimization problems. In this work,
we present a C++ library, nondLib, which allows to perform several
operations to extract nondominated points from an archive for
any number of dimensions. In addition, we discuss the practical
impact of the number of nondominated points in the archive in the
run-time of these implementations.

CCS CONCEPTS
• Theory of computation → Computational geometry; Evolu-
tionary algorithms; • Applied computing→Multi-criterion
optimization and decision-making.

KEYWORDS
Multiobjective Evolutionary Algorithms, Dimension Sweep, Multi-
dimensional Divide & Conquer
ACM Reference Format:
Duarte M. Dias, Alexandre D. Jesus, and Luís Paquete. 2021. A Software Li-
brary for Archiving Nondominated Points. In 2021 Genetic and Evolutionary
Computation Conference Companion (GECCO ’21 Companion), July 10–14,
2021, Lille, France. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3449726.3462737

1 INTRODUCTION
Finding a set of nondominated points from a larger point set is a
recurrent task that arises in several heuristic approaches such as
Pareto Local Search [7] and implicit enumeration algorithms [5]
for multiobjective combinatorial optimization problems. Typically,
these approaches use an archive of best solutions found that is con-
tinuously updated during the search process. It is usually required
that this set contains only images of solutions in the objective space
(as 𝑑-dimensional points) that are mutually nondominated. For the
case of unbounded archiving strategies, the archive may grow con-
siderably and operations that remove dominated solutions become
a bottleneck in terms of running time.

We present a C++ library, nondLib, that performs update oper-
ations on an archive to maintain only nondominated points. This
library is publicly available at [2] and it can easily be used by pro-
grammers with only basic knowledge of C++ and C++ Standard

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3462737

Template Library (STL). Currently, it requires this archive to be
passed as a reference to an std::vector<C> where type C denotes
a point in the objective space implemented as a container of at least
size 𝑑 . Exactly which containers are allowed depends on the exact
library function but random access containers are always valid, e.g.
std::vector, std::array, and std::deque.

This library allows to perform two operations on an archive of
𝑛 points: 1) filter, which returns the points that are nondominated
in the archive, assuming that a certain fraction of it may contain
dominated points, and 2) update, which returns the points that are
nondominated in the archive once a new point is inserted, assuming
that the former contains only (mutually) nondominated points.
Since maintaining an unbounded archive of nondominated points
may lead to large memory requirements, we consider two different
implementations of the operations above: 1) in-place, in which the
operations are performed in-place, and 2) not-in-place, in which the
nondominated points are copied to another data structure. Although
the latter implies memory duplication, it leads to better running
times since the removal of dominated points is not performed, and
may allow for different use cases for the library.

The algorithms implemented in nondLib are able to deal with
any number of objective functions (𝑑). In the case of the filter op-
eration, for 𝑑 = 2 and 𝑑 = 3, it uses 𝑂 (𝑛 log𝑛) dimension-sweep
algorithms described in [4], whereas, for 𝑑 ≥ 4, it provides two
alternatives: 1) a classical 𝑂 (𝑑𝑛2)-time algorithm that performs
pairwise comparisons, and 2) an 𝑂 (𝑛 log𝑑−2 𝑛) multidimensional
divide-and-conquer [4]. Note that, these two algorithms may also
be used for smaller dimensions, and in very specific cases, the qua-
dratic version may exhibit linear behavior, e.g. when the first point
in the list dominates all others, and as such, be preferable to the
dimension-sweep implementations. For the update operation, the
library implements an 𝑂 (𝑑𝑛)-time algorithm for any 𝑑 .

2 EXPERIMENTAL ANALYSIS
We conducted an experimental analysis of the in-place filter oper-
ation algorithms implemented in nondLib for 𝑑 ∈ {2, 3, 4, 6, 8, 10}.
For 𝑑 ≥ 4, we consider both the quadratic-time algorithm (quad)
and the multidimensional divide-and-conquer (d&c).

In order to understand the performance of our approaches with
respect to 𝑛, 𝑑 and the fraction of nondominated points in the
archive (𝑚/𝑛), we generated 𝑛 𝑑-dimensional points in which a
probability 𝑝 defines whether a given point is dominated or not.
First, a point is generated uniformly on the surface of the first
quadrant of an unit radius 𝑑-dimensional sphere using Muller’s
method [6]. Then, if 𝑝 > 𝑚/𝑛, the point coordinates are multiplied
by a value drawn from an uniform distribution in the interval
[0, 1). We considered 𝑛 = 10𝑖 , for 𝑖 = 3, . . . , 7, and𝑚/𝑛 = 𝑗/5 for
𝑗 = 1, . . . , 5, and generated 30 point sets for each combination of 𝑛,
𝑚/𝑛 and 𝑑 .

https://doi.org/10.1145/3449726.3462737
https://doi.org/10.1145/3449726.3462737
https://doi.org/10.1145/3449726.3462737


GECCO ’21 Companion, July 10–14, 2021, Lille, France Duarte M. Dias, Alexandre D. Jesus, and Luís Paquete

Table 1: Average and standard deviation of CPU-time in seconds

𝑛 𝑚/𝑛 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 6 𝑑 = 8 𝑑 = 10
quad d&c quad d&c quad d&c quad d&c

103 1/5 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
2/5 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
3/5 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
4/5 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.02±0.00
5/5 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.02±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00

104 1/5 0.00±0.00 0.00±0.00 0.06±0.00 0.01±0.00 0.10±0.00 0.05±0.00 0.15±0.00 0.10±0.00 0.21±0.00 0.13±0.00
2/5 0.00±0.00 0.00±0.00 0.16±0.01 0.02±0.00 0.21±0.00 0.07±0.00 0.27±0.01 0.13±0.00 0.33±0.00 0.17±0.00
3/5 0.00±0.00 0.00±0.00 0.33±0.01 0.02±0.00 0.37±0.00 0.09±0.01 0.44±0.01 0.17±0.00 0.50±0.00 0.21±0.00
4/5 0.00±0.00 0.01±0.00 0.56±0.01 0.02±0.00 0.61±0.01 0.16±0.01 0.67±0.01 0.22±0.00 0.72±0.00 0.26±0.01
5/5 0.00±0.00 0.01±0.00 0.86±0.02 0.02±0.00 0.90±0.01 0.37±0.01 0.95±0.01 0.27±0.00 0.99±0.00 0.31±0.01

105 1/5 0.02±0.00 0.03±0.00 4.76±0.07 0.16±0.01 8.84±0.39 0.76±0.01 17.26±1.64 2.05±0.01 33.91±0.00 3.22±0.02
2/5 0.02±0.00 0.04±0.00 20.09±0.72 0.19±0.01 28.91±3.02 1.15±0.01 50.01±4.99 3.09±0.04 81.29±0.00 4.59±0.02
3/5 0.02±0.00 0.04±0.00 65.54±2.67 0.21±0.01 85.34±6.07 1.60±0.01 124.13±5.82 4.33±0.02 157.63±0.00 6.24±0.02
4/5 0.02±0.00 0.05±0.00 149.37±3.62 0.24±0.01 186.28±9.99 2.07±0.02 222.58±13.72 5.70±0.02 246.99±0.00 8.11±0.04
5/5 0.02±0.00 0.05±0.00 271.76±5.23 0.26±0.01 305.82±9.80 2.55±0.05 339.68±8.64 7.04±0.02 364.07±0.00 9.91±0.04

106 1/5 0.86±0.07 0.95±0.06 - 3.19±0.10 - 12.31±0.14 - 41.27±0.27 - 78.83±0.28
2/5 0.80±0.06 0.94±0.06 - 3.44±0.13 - 20.14±0.13 - 69.65±0.73 - 125.16±0.51
3/5 0.84±0.04 1.02±0.06 - 3.69±0.05 - 29.03±0.16 - 101.68±0.40 - 180.67±0.75
4/5 0.79±0.04 1.02±0.05 - 4.15±0.09 - 38.52±0.18 - 137.15±0.67 - 242.87±0.97
5/5 0.67±0.09 0.94±0.08 - 4.34±0.17 - 47.61±0.72 - 173.76±0.85 - 310.14±1.90

107 1/5 14.26±2.47 14.51±2.98 - 49.63±1.17 - 201.88±3.96 - - - -
2/5 13.93±3.26 15.50±3.55 - 55.00±2.08 - 359.94±4.38 - - - -
3/5 11.95±3.45 14.74±3.27 - 59.89±0.79 - 539.32±8.35 - - - -
4/5 11.70±3.39 14.26±3.03 - 67.71±0.69 - 718.65±10.30 - - - -
5/5 10.05±3.52 14.42±3.18 - 67.46±6.40 - - - - - -

The experiments were conducted on a computer cluster with two
Intel Xeon Silver 4210R 2.4G processors with 10 cores / 20 threads
and 13.75M cache, two 32GB RDIMM, operating system Debian
GNU/Linux 10 (buster). The library was compiled with GNU g++
version 8.3.0 under the C++14 standard and using optimization flag
O3. We defined a cut-off time of 720 seconds for each run.

Table 1 presents the average and standard deviation of the CPU-
times in seconds taken by our approaches for different values of 𝑛,
𝑑 and fraction of nondominated points (column𝑚/𝑛). The symbol
“-” means that the algorithm was not able to terminate within the
cut-off limit. The boldface indicates which of the two approaches
for 𝑑 ≥ 4 performed better in terms of average running-time. Note
that for 𝑑 = 2 and 𝑑 = 3 the dimension-sweep algorithms take less
than 0.1 seconds for 𝑛 = 105 and less than 20 seconds for 𝑛 = 107. In
addition, they are not strongly affected by the ratio𝑚/𝑛. Differently,
for the case of 𝑑 ≥ 4, both quadratic-time and multidimensional
divide-and-conquer algorithms require more time as the ratio𝑚/𝑛
increases. This effect is stronger for the quadratic-time algorithm,
which is not able to solve instances for 𝑛 ≥ 106 and 𝑑 ≥ 4. The
multidimensional divide-and-conquer is always faster than the
quadratic time for 𝑛 ≥ 104. For 𝑛 = 103, both present comparable
run-times, which may be due to the initial setup overhead of the
multidimensional divide-and-conquer. Preliminary experiments for
𝑑 = 20 indicate that the multidimensional divide-and-conquer is
still faster than the quadratic-time algorithm, except for small 𝑛
and small𝑚/𝑛, although with small difference.

3 FURTHERWORK
Further work consists of considering the case in which the archive
is already (lexicographically) sorted, which should give further

improvements in the running-time. We also plan to integrate the
data structures mentioned in [3] for the update operation as well
as the operation of returning the nondominated points from the
union of several archives, each of which containing only mutu-
ally nondominated points, which typically arises on dynamic pro-
gramming algorithms for multiobjective combinatorial optimiza-
tion problems [1, 5]. Finally, it would also be interesting to further
generalize the library to accept other containers.

ACKNOWLEDGMENTS
D.M. Dias acknowledges a research fellowship from CISUC, Univer-
sity of Coimbra. This work was funded by national funds through
the FCT - Foundation for Science and Technology, I.P., within the
scope of the project CISUC - UID/CEC/00326/2020 and by European
Social Fund, through the Regional Operational Program Centro
2020.

REFERENCES
[1] R. Beier and B. Vöcking. 2011. The Knapsack Problem. In Algorithms Unplugged,

B. Vöcking et al. H. Alt, M. Dietzfelbinger, R. Reischuk, C. Scheideler, H. Vollmer,
and D. Wagner (Eds.). Springer, 375–381.

[2] D.M. Dias, A.D. Jesus, and L. Paquete. 2021. nondLib (Version v0.2.0). http:
//doi.org/10.5281/zenodo.4733027.

[3] A. Jaszkiewicz and T. Lust. 2018. ND-Tree-Based Update: A Fast Algorithm for
the Dynamic Nondominance Problem. IEEE Trans. Evol. Comput. 22, 5 (2018),
778–791.

[4] H.T. Kung, F. Luccio, and F.P. Preparata. 1975. On Finding the Maxima of a Set of
Vectors. J. ACM 22, 4 (1975), 469–476.

[5] A. Liefooghe, L. Paquete, and J.R. Figueira. 2013. On Local Search for Bi-objective
Knapsack Problems. Evol. Comput. 21, 1 (2013), 179–196.

[6] M.E. Muller. 1959. A Note on a Method for Generating Points Uniformly on
N-Dimensional Spheres. Commun. ACM 2 (1959), 19–20.

[7] L. Paquete, T. Schiavinotto, and T. Stützle. 2007. On Local Optima in Multiobjective
Combinatorial Optimization Problems. Ann. Oper. Res. 156, 1 (2007), 83–97.

http://doi.org/10.5281/zenodo.4733027
http://doi.org/10.5281/zenodo.4733027

	Abstract
	1 Introduction
	2 Experimental analysis
	3 Further work
	Acknowledgments
	References

